Summary: | ABSTRACT We review geological evidence on the origin of the modern transcontinental Amazon River, and the paleogeographic history of riverine connections among the principal sedimentary basins of northern South America through the Neogene. Data are reviewed from new geochronological datasets using radiogenic and stable isotopes, and from traditional geochronological methods, including sedimentology, structural mapping, sonic and seismic logging, and biostratigraphy. The modern Amazon River and the continental-scale Amazon drainage basin were assembled during the late Miocene and Pliocene, via some of the largest purported river capture events in Earth history. Andean sediments are first recorded in the Amazon Fan at about 10.1-9.4 Ma, with a large increase in sedimentation at about 4.5 Ma. The transcontinental Amazon River therefore formed over a period of about 4.9-5.6 million years, by means of several river capture events. The origins of the modern Amazon River are hypothesized to be linked with that of mega-wetland landscapes of tropical South America (e.g. várzeas, pantanals, seasonally flooded savannahs). Mega-wetlands have persisted over about 10% northern South America under different configurations for >15 million years. Although the paleogeographic reconstructions presented are simplistic and coarse-grained, they are offered to inspire the collection and analysis of new sedimentological and geochronological datasets.
|