Adaptively Constrained Stochastic Model Predictive Control for the Optimal Dispatch of Microgrid

In this paper, an adaptively constrained stochastic model predictive control (MPC) is proposed to achieve less-conservative coordination between energy storage units and uncertain renewable energy sources (RESs) in a microgrid (MG). Besides the economic objective of MG operation, the limits of state...

Full description

Bibliographic Details
Main Authors: Xiaogang Guo, Zhejing Bao, Zhijie Li, Wenjun Yan
Format: Article
Language:English
Published: MDPI AG 2018-01-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/11/1/243
Description
Summary:In this paper, an adaptively constrained stochastic model predictive control (MPC) is proposed to achieve less-conservative coordination between energy storage units and uncertain renewable energy sources (RESs) in a microgrid (MG). Besides the economic objective of MG operation, the limits of state-of-charge (SOC) and discharging/charging power of the energy storage unit are formulated as chance constraints when accommodating uncertainties of RESs, considering mild violations of these constraints are allowed during long-term operation, and a closed-loop online update strategy is performed to adaptively tighten or relax constraints according to the actual deviation probability of violation level from the desired one as well as the current change rate of deviation probability. Numerical studies show that the proposed adaptively constrained stochastic MPC for MG optimal operation is much less conservative compared with the scenario optimization based robust MPC, and also presents a better convergence performance to the desired constraint violation level than other online update strategies.
ISSN:1996-1073