Finding the way with a noisy brain.
Successful navigation is fundamental to the survival of nearly every animal on earth, and achieved by nervous systems of vastly different sizes and characteristics. Yet surprisingly little is known of the detailed neural circuitry from any species which can accurately represent space for navigation....
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2010-01-01
|
Series: | PLoS Computational Biology |
Online Access: | http://europepmc.org/articles/PMC2978673?pdf=render |
_version_ | 1818155356929392640 |
---|---|
author | Allen Cheung Robert Vickerstaff |
author_facet | Allen Cheung Robert Vickerstaff |
author_sort | Allen Cheung |
collection | DOAJ |
description | Successful navigation is fundamental to the survival of nearly every animal on earth, and achieved by nervous systems of vastly different sizes and characteristics. Yet surprisingly little is known of the detailed neural circuitry from any species which can accurately represent space for navigation. Path integration is one of the oldest and most ubiquitous navigation strategies in the animal kingdom. Despite a plethora of computational models, from equational to neural network form, there is currently no consensus, even in principle, of how this important phenomenon occurs neurally. Recently, all path integration models were examined according to a novel, unifying classification system. Here we combine this theoretical framework with recent insights from directed walk theory, and develop an intuitive yet mathematically rigorous proof that only one class of neural representation of space can tolerate noise during path integration. This result suggests many existing models of path integration are not biologically plausible due to their intolerance to noise. This surprising result imposes significant computational limitations on the neurobiological spatial representation of all successfully navigating animals, irrespective of species. Indeed, noise-tolerance may be an important functional constraint on the evolution of neuroarchitectural plans in the animal kingdom. |
first_indexed | 2024-12-11T14:41:07Z |
format | Article |
id | doaj.art-cbaf20f651dd48ff89ddcff79fdf2df9 |
institution | Directory Open Access Journal |
issn | 1553-734X 1553-7358 |
language | English |
last_indexed | 2024-12-11T14:41:07Z |
publishDate | 2010-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS Computational Biology |
spelling | doaj.art-cbaf20f651dd48ff89ddcff79fdf2df92022-12-22T01:01:56ZengPublic Library of Science (PLoS)PLoS Computational Biology1553-734X1553-73582010-01-01611e100099210.1371/journal.pcbi.1000992Finding the way with a noisy brain.Allen CheungRobert VickerstaffSuccessful navigation is fundamental to the survival of nearly every animal on earth, and achieved by nervous systems of vastly different sizes and characteristics. Yet surprisingly little is known of the detailed neural circuitry from any species which can accurately represent space for navigation. Path integration is one of the oldest and most ubiquitous navigation strategies in the animal kingdom. Despite a plethora of computational models, from equational to neural network form, there is currently no consensus, even in principle, of how this important phenomenon occurs neurally. Recently, all path integration models were examined according to a novel, unifying classification system. Here we combine this theoretical framework with recent insights from directed walk theory, and develop an intuitive yet mathematically rigorous proof that only one class of neural representation of space can tolerate noise during path integration. This result suggests many existing models of path integration are not biologically plausible due to their intolerance to noise. This surprising result imposes significant computational limitations on the neurobiological spatial representation of all successfully navigating animals, irrespective of species. Indeed, noise-tolerance may be an important functional constraint on the evolution of neuroarchitectural plans in the animal kingdom.http://europepmc.org/articles/PMC2978673?pdf=render |
spellingShingle | Allen Cheung Robert Vickerstaff Finding the way with a noisy brain. PLoS Computational Biology |
title | Finding the way with a noisy brain. |
title_full | Finding the way with a noisy brain. |
title_fullStr | Finding the way with a noisy brain. |
title_full_unstemmed | Finding the way with a noisy brain. |
title_short | Finding the way with a noisy brain. |
title_sort | finding the way with a noisy brain |
url | http://europepmc.org/articles/PMC2978673?pdf=render |
work_keys_str_mv | AT allencheung findingthewaywithanoisybrain AT robertvickerstaff findingthewaywithanoisybrain |