SIMRES-TV: NOISE AND RESIDUAL SIMILARITY FOR PARAMETER ESTIMATION IN TOTAL VARIATION

Image restoration with regularization models is very popular in the image processing literature. Total variation (TV) is one of the important edge preserving regularization models used, however, to obtain optimal restoration results the regularization parameter needs to be set appropriately. We prop...

Full description

Bibliographic Details
Main Authors: V. B. S. Prasath, N. N. Hien, D. N. H. Thanh, S. Dvoenko
Format: Article
Language:English
Published: Copernicus Publications 2021-04-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIV-2-W1-2021/171/2021/isprs-archives-XLIV-2-W1-2021-171-2021.pdf
_version_ 1818720667800961024
author V. B. S. Prasath
V. B. S. Prasath
V. B. S. Prasath
V. B. S. Prasath
N. N. Hien
D. N. H. Thanh
S. Dvoenko
author_facet V. B. S. Prasath
V. B. S. Prasath
V. B. S. Prasath
V. B. S. Prasath
N. N. Hien
D. N. H. Thanh
S. Dvoenko
author_sort V. B. S. Prasath
collection DOAJ
description Image restoration with regularization models is very popular in the image processing literature. Total variation (TV) is one of the important edge preserving regularization models used, however, to obtain optimal restoration results the regularization parameter needs to be set appropriately. We propose here a new parameter estimation approach for total variation based image restoration. By utilizing known noise levels we compute the regularization parameter by reducing the similarity between residual and noise variances. We use the split Bregman algorithm for the total variation along with this automatic parameter estimation step to obtain a very fast restoration scheme. Experimental results indicate the proposed parameter estimation obtained better denoised images and videos in terms of PSNR and SSIM measures and the computational overload is less compared with other approaches.
first_indexed 2024-12-17T20:26:29Z
format Article
id doaj.art-cbc673a8282047a28cfcb638d31058c0
institution Directory Open Access Journal
issn 1682-1750
2194-9034
language English
last_indexed 2024-12-17T20:26:29Z
publishDate 2021-04-01
publisher Copernicus Publications
record_format Article
series The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
spelling doaj.art-cbc673a8282047a28cfcb638d31058c02022-12-21T21:33:45ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342021-04-01XLIV-2-W1-202117117610.5194/isprs-archives-XLIV-2-W1-2021-171-2021SIMRES-TV: NOISE AND RESIDUAL SIMILARITY FOR PARAMETER ESTIMATION IN TOTAL VARIATIONV. B. S. Prasath0V. B. S. Prasath1V. B. S. Prasath2V. B. S. Prasath3N. N. Hien4D. N. H. Thanh5S. Dvoenko6Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USADepartment of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USADepartment of Biomedical Informatics, College of Medicine, University of Cincinnati, OH 45267 USADepartment of Electrical Engineering and Computer Science, University of Cincinnati, OH 45221, USADong Thap University, Cao Lanh City, VietnamDepartment of Information Technology, School of Business Information Technology, University of Economics Ho Chi Minh City, VietnamInstitute of Applied Mathematics and Computer Science, Tula State University, RussiaImage restoration with regularization models is very popular in the image processing literature. Total variation (TV) is one of the important edge preserving regularization models used, however, to obtain optimal restoration results the regularization parameter needs to be set appropriately. We propose here a new parameter estimation approach for total variation based image restoration. By utilizing known noise levels we compute the regularization parameter by reducing the similarity between residual and noise variances. We use the split Bregman algorithm for the total variation along with this automatic parameter estimation step to obtain a very fast restoration scheme. Experimental results indicate the proposed parameter estimation obtained better denoised images and videos in terms of PSNR and SSIM measures and the computational overload is less compared with other approaches.https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIV-2-W1-2021/171/2021/isprs-archives-XLIV-2-W1-2021-171-2021.pdf
spellingShingle V. B. S. Prasath
V. B. S. Prasath
V. B. S. Prasath
V. B. S. Prasath
N. N. Hien
D. N. H. Thanh
S. Dvoenko
SIMRES-TV: NOISE AND RESIDUAL SIMILARITY FOR PARAMETER ESTIMATION IN TOTAL VARIATION
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
title SIMRES-TV: NOISE AND RESIDUAL SIMILARITY FOR PARAMETER ESTIMATION IN TOTAL VARIATION
title_full SIMRES-TV: NOISE AND RESIDUAL SIMILARITY FOR PARAMETER ESTIMATION IN TOTAL VARIATION
title_fullStr SIMRES-TV: NOISE AND RESIDUAL SIMILARITY FOR PARAMETER ESTIMATION IN TOTAL VARIATION
title_full_unstemmed SIMRES-TV: NOISE AND RESIDUAL SIMILARITY FOR PARAMETER ESTIMATION IN TOTAL VARIATION
title_short SIMRES-TV: NOISE AND RESIDUAL SIMILARITY FOR PARAMETER ESTIMATION IN TOTAL VARIATION
title_sort simres tv noise and residual similarity for parameter estimation in total variation
url https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIV-2-W1-2021/171/2021/isprs-archives-XLIV-2-W1-2021-171-2021.pdf
work_keys_str_mv AT vbsprasath simrestvnoiseandresidualsimilarityforparameterestimationintotalvariation
AT vbsprasath simrestvnoiseandresidualsimilarityforparameterestimationintotalvariation
AT vbsprasath simrestvnoiseandresidualsimilarityforparameterestimationintotalvariation
AT vbsprasath simrestvnoiseandresidualsimilarityforparameterestimationintotalvariation
AT nnhien simrestvnoiseandresidualsimilarityforparameterestimationintotalvariation
AT dnhthanh simrestvnoiseandresidualsimilarityforparameterestimationintotalvariation
AT sdvoenko simrestvnoiseandresidualsimilarityforparameterestimationintotalvariation