A New Super Resolution Framework Based on Multi-Task Learning for Remote Sensing Images

Super-resolution (SR) algorithms based on deep learning have dominated in various tasks, including medical imaging, street view surveillance and face recognition. In the remote sensing field, most of the current SR methods utilize the low-resolution (LR) images that directly bicubic downsampled the...

Full description

Bibliographic Details
Main Authors: Li Yan, Kun Chang
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/5/1743
Description
Summary:Super-resolution (SR) algorithms based on deep learning have dominated in various tasks, including medical imaging, street view surveillance and face recognition. In the remote sensing field, most of the current SR methods utilize the low-resolution (LR) images that directly bicubic downsampled the high-resolution (HR) images as not only train set but also test set, thus achieving high PSNR/SSIM scores but showing performance drop in application because the degradation model in remote sensing images is subjected to Gaussian blur with unknown parameters. Inspired by multi-task learning strategy, we propose a multiple-blur-kernel super-resolution framework (MSF), in which a multiple-blur-kernel learning module (MLM) optimizes the parameters of the network transferable and sensitive for SR procedures with different blur kernels. Besides, to simultaneously exploit the prior of the large-scale remote sensing images and recurrent information in a single test image, a class-feature capture module (CCM) and an unsupervised learning module (ULM) are leveraged in our framework. Extensive experiments show that our framework outperforms the current state-of-the-art SR algorithms in remotely sensed imagery SR with unknown Gaussian blur kernel.
ISSN:1424-8220