Sampling Parallel SOA-MZIs Configuration for All-Optical Simultaneous Frequency Down-Conversion

In this paper, we expound a modulation concept to contrive simultaneous frequency down-conversion based on a three parallel Semiconductor Optical Amplifier Mach-Zehnder Interferometers (SOA-MZIs) link by using a band pass sampling method in a Virtual Photonics Inc. simulator. Each SOA-MZI is deploye...

Full description

Bibliographic Details
Main Authors: Hassan Termos, Ali Mansour
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/9/10/745
Description
Summary:In this paper, we expound a modulation concept to contrive simultaneous frequency down-conversion based on a three parallel Semiconductor Optical Amplifier Mach-Zehnder Interferometers (SOA-MZIs) link by using a band pass sampling method in a Virtual Photonics Inc. simulator. Each SOA-MZI is deployed to achieve a down-converted signal, which has ten replicas related to the first ten harmonic ranks of the sampling signal, at the SOA-MZI outer port. Then, the admixture of the three down-converted signals yields a sampled signal, which is called a simultaneous down-converted signal that contains thirty different replicas. The positive down-conversion gains with top values are reached with the sampling parallel SOA-MZIs link. Moreover, we evaluated the quality of the parallel SOA-MZIs transmission system over orthogonal frequency division multiplexing (OFDM) complex modulated signals using the error vector magnitude values as a performance index. The utmost bit rate attained is 2 Gbit/s for OFDM modulations.
ISSN:2304-6732