Determination of Optimum Outlet Slit Thickness and Outlet Angle for the Bladeless Fan Using the CFD Approach
Bladeless fans are more energy efficient, safer due to the hidden blades, easier to clean, and more adjustable than conventional fans. This paper investigates the influence of the airfoil’s outlet slit thickness on the discharge ratio by varying the outlet slit thickness of an Eppler 473 airfoil fro...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-02-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/16/4/1633 |
_version_ | 1797621323682283520 |
---|---|
author | Vedant Joshi Wedyn Noronha Vinayagamurthy G. Sivakumar R. Rajasekarababu K. B. |
author_facet | Vedant Joshi Wedyn Noronha Vinayagamurthy G. Sivakumar R. Rajasekarababu K. B. |
author_sort | Vedant Joshi |
collection | DOAJ |
description | Bladeless fans are more energy efficient, safer due to the hidden blades, easier to clean, and more adjustable than conventional fans. This paper investigates the influence of the airfoil’s outlet slit thickness on the discharge ratio by varying the outlet slit thickness of an Eppler 473 airfoil from 1.2 mm to 2 mm in intervals of 0.2 mm by using a k-omega SST turbulence model with an all y<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>+</mo></msup></semantics></math></inline-formula> wall treatment used to numerically simulate in CFD. The computational results indicated that smaller slits showed higher discharge ratios. The airfoil with a 1.2 mm slit thickness showed a discharge ratio of 18.78, a 24% increase from the discharge ratio of the 2 mm slit. The effect of outlet angle on the pressure drop across the airfoil was also studied. Outlet angles were varied from 16<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula> to 26<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula> by an interval of 2<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula>. The airfoil profile with a 24<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula> outlet angle showed a maximum pressure difference of 965 Pa between the slit and leading edge. In contrast, the 16<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula> outlet angle showed the least pressure difference of 355 Pa. Parameters such as average velocity (U), turbulent kinetic energy, the standard deviation of velocity, and outlet velocity magnitude are used to assess the performance of airfoil profiles used in bladeless fan. |
first_indexed | 2024-03-11T08:54:14Z |
format | Article |
id | doaj.art-cbd3f758434a4133bb473c95ecc2f737 |
institution | Directory Open Access Journal |
issn | 1996-1073 |
language | English |
last_indexed | 2024-03-11T08:54:14Z |
publishDate | 2023-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Energies |
spelling | doaj.art-cbd3f758434a4133bb473c95ecc2f7372023-11-16T20:15:36ZengMDPI AGEnergies1996-10732023-02-01164163310.3390/en16041633Determination of Optimum Outlet Slit Thickness and Outlet Angle for the Bladeless Fan Using the CFD ApproachVedant Joshi0Wedyn Noronha1Vinayagamurthy G.2Sivakumar R.3Rajasekarababu K. B.4School of Mechanical Engineering, Vellore Institute of Technology, Chennai 600127, IndiaSchool of Mechanical Engineering, Vellore Institute of Technology, Chennai 600127, IndiaCentre for Innovation and Product Development, School of Mechanical Engineering, Vellore Institute of Technology, Chennai 600127, IndiaSchool of Mechanical Engineering, Vellore Institute of Technology, Chennai 600127, IndiaSchool of Civil and Environmental Engineering, AIWE-Lab, Harbin Institute of Technology Shenzhen, Shenzhen 518055, ChinaBladeless fans are more energy efficient, safer due to the hidden blades, easier to clean, and more adjustable than conventional fans. This paper investigates the influence of the airfoil’s outlet slit thickness on the discharge ratio by varying the outlet slit thickness of an Eppler 473 airfoil from 1.2 mm to 2 mm in intervals of 0.2 mm by using a k-omega SST turbulence model with an all y<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>+</mo></msup></semantics></math></inline-formula> wall treatment used to numerically simulate in CFD. The computational results indicated that smaller slits showed higher discharge ratios. The airfoil with a 1.2 mm slit thickness showed a discharge ratio of 18.78, a 24% increase from the discharge ratio of the 2 mm slit. The effect of outlet angle on the pressure drop across the airfoil was also studied. Outlet angles were varied from 16<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula> to 26<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula> by an interval of 2<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula>. The airfoil profile with a 24<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula> outlet angle showed a maximum pressure difference of 965 Pa between the slit and leading edge. In contrast, the 16<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula> outlet angle showed the least pressure difference of 355 Pa. Parameters such as average velocity (U), turbulent kinetic energy, the standard deviation of velocity, and outlet velocity magnitude are used to assess the performance of airfoil profiles used in bladeless fan.https://www.mdpi.com/1996-1073/16/4/1633bladeless fanoutlet slit thicknessoutlet slit angledischarge ratiocoanda effectEppler 473 |
spellingShingle | Vedant Joshi Wedyn Noronha Vinayagamurthy G. Sivakumar R. Rajasekarababu K. B. Determination of Optimum Outlet Slit Thickness and Outlet Angle for the Bladeless Fan Using the CFD Approach Energies bladeless fan outlet slit thickness outlet slit angle discharge ratio coanda effect Eppler 473 |
title | Determination of Optimum Outlet Slit Thickness and Outlet Angle for the Bladeless Fan Using the CFD Approach |
title_full | Determination of Optimum Outlet Slit Thickness and Outlet Angle for the Bladeless Fan Using the CFD Approach |
title_fullStr | Determination of Optimum Outlet Slit Thickness and Outlet Angle for the Bladeless Fan Using the CFD Approach |
title_full_unstemmed | Determination of Optimum Outlet Slit Thickness and Outlet Angle for the Bladeless Fan Using the CFD Approach |
title_short | Determination of Optimum Outlet Slit Thickness and Outlet Angle for the Bladeless Fan Using the CFD Approach |
title_sort | determination of optimum outlet slit thickness and outlet angle for the bladeless fan using the cfd approach |
topic | bladeless fan outlet slit thickness outlet slit angle discharge ratio coanda effect Eppler 473 |
url | https://www.mdpi.com/1996-1073/16/4/1633 |
work_keys_str_mv | AT vedantjoshi determinationofoptimumoutletslitthicknessandoutletangleforthebladelessfanusingthecfdapproach AT wedynnoronha determinationofoptimumoutletslitthicknessandoutletangleforthebladelessfanusingthecfdapproach AT vinayagamurthyg determinationofoptimumoutletslitthicknessandoutletangleforthebladelessfanusingthecfdapproach AT sivakumarr determinationofoptimumoutletslitthicknessandoutletangleforthebladelessfanusingthecfdapproach AT rajasekarababukb determinationofoptimumoutletslitthicknessandoutletangleforthebladelessfanusingthecfdapproach |