Determination of Optimum Outlet Slit Thickness and Outlet Angle for the Bladeless Fan Using the CFD Approach

Bladeless fans are more energy efficient, safer due to the hidden blades, easier to clean, and more adjustable than conventional fans. This paper investigates the influence of the airfoil’s outlet slit thickness on the discharge ratio by varying the outlet slit thickness of an Eppler 473 airfoil fro...

Full description

Bibliographic Details
Main Authors: Vedant Joshi, Wedyn Noronha, Vinayagamurthy G., Sivakumar R., Rajasekarababu K. B.
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/16/4/1633
_version_ 1797621323682283520
author Vedant Joshi
Wedyn Noronha
Vinayagamurthy G.
Sivakumar R.
Rajasekarababu K. B.
author_facet Vedant Joshi
Wedyn Noronha
Vinayagamurthy G.
Sivakumar R.
Rajasekarababu K. B.
author_sort Vedant Joshi
collection DOAJ
description Bladeless fans are more energy efficient, safer due to the hidden blades, easier to clean, and more adjustable than conventional fans. This paper investigates the influence of the airfoil’s outlet slit thickness on the discharge ratio by varying the outlet slit thickness of an Eppler 473 airfoil from 1.2 mm to 2 mm in intervals of 0.2 mm by using a k-omega SST turbulence model with an all y<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>+</mo></msup></semantics></math></inline-formula> wall treatment used to numerically simulate in CFD. The computational results indicated that smaller slits showed higher discharge ratios. The airfoil with a 1.2 mm slit thickness showed a discharge ratio of 18.78, a 24% increase from the discharge ratio of the 2 mm slit. The effect of outlet angle on the pressure drop across the airfoil was also studied. Outlet angles were varied from 16<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula> to 26<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula> by an interval of 2<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula>. The airfoil profile with a 24<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula> outlet angle showed a maximum pressure difference of 965 Pa between the slit and leading edge. In contrast, the 16<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula> outlet angle showed the least pressure difference of 355 Pa. Parameters such as average velocity (U), turbulent kinetic energy, the standard deviation of velocity, and outlet velocity magnitude are used to assess the performance of airfoil profiles used in bladeless fan.
first_indexed 2024-03-11T08:54:14Z
format Article
id doaj.art-cbd3f758434a4133bb473c95ecc2f737
institution Directory Open Access Journal
issn 1996-1073
language English
last_indexed 2024-03-11T08:54:14Z
publishDate 2023-02-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj.art-cbd3f758434a4133bb473c95ecc2f7372023-11-16T20:15:36ZengMDPI AGEnergies1996-10732023-02-01164163310.3390/en16041633Determination of Optimum Outlet Slit Thickness and Outlet Angle for the Bladeless Fan Using the CFD ApproachVedant Joshi0Wedyn Noronha1Vinayagamurthy G.2Sivakumar R.3Rajasekarababu K. B.4School of Mechanical Engineering, Vellore Institute of Technology, Chennai 600127, IndiaSchool of Mechanical Engineering, Vellore Institute of Technology, Chennai 600127, IndiaCentre for Innovation and Product Development, School of Mechanical Engineering, Vellore Institute of Technology, Chennai 600127, IndiaSchool of Mechanical Engineering, Vellore Institute of Technology, Chennai 600127, IndiaSchool of Civil and Environmental Engineering, AIWE-Lab, Harbin Institute of Technology Shenzhen, Shenzhen 518055, ChinaBladeless fans are more energy efficient, safer due to the hidden blades, easier to clean, and more adjustable than conventional fans. This paper investigates the influence of the airfoil’s outlet slit thickness on the discharge ratio by varying the outlet slit thickness of an Eppler 473 airfoil from 1.2 mm to 2 mm in intervals of 0.2 mm by using a k-omega SST turbulence model with an all y<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>+</mo></msup></semantics></math></inline-formula> wall treatment used to numerically simulate in CFD. The computational results indicated that smaller slits showed higher discharge ratios. The airfoil with a 1.2 mm slit thickness showed a discharge ratio of 18.78, a 24% increase from the discharge ratio of the 2 mm slit. The effect of outlet angle on the pressure drop across the airfoil was also studied. Outlet angles were varied from 16<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula> to 26<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula> by an interval of 2<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula>. The airfoil profile with a 24<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula> outlet angle showed a maximum pressure difference of 965 Pa between the slit and leading edge. In contrast, the 16<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula> outlet angle showed the least pressure difference of 355 Pa. Parameters such as average velocity (U), turbulent kinetic energy, the standard deviation of velocity, and outlet velocity magnitude are used to assess the performance of airfoil profiles used in bladeless fan.https://www.mdpi.com/1996-1073/16/4/1633bladeless fanoutlet slit thicknessoutlet slit angledischarge ratiocoanda effectEppler 473
spellingShingle Vedant Joshi
Wedyn Noronha
Vinayagamurthy G.
Sivakumar R.
Rajasekarababu K. B.
Determination of Optimum Outlet Slit Thickness and Outlet Angle for the Bladeless Fan Using the CFD Approach
Energies
bladeless fan
outlet slit thickness
outlet slit angle
discharge ratio
coanda effect
Eppler 473
title Determination of Optimum Outlet Slit Thickness and Outlet Angle for the Bladeless Fan Using the CFD Approach
title_full Determination of Optimum Outlet Slit Thickness and Outlet Angle for the Bladeless Fan Using the CFD Approach
title_fullStr Determination of Optimum Outlet Slit Thickness and Outlet Angle for the Bladeless Fan Using the CFD Approach
title_full_unstemmed Determination of Optimum Outlet Slit Thickness and Outlet Angle for the Bladeless Fan Using the CFD Approach
title_short Determination of Optimum Outlet Slit Thickness and Outlet Angle for the Bladeless Fan Using the CFD Approach
title_sort determination of optimum outlet slit thickness and outlet angle for the bladeless fan using the cfd approach
topic bladeless fan
outlet slit thickness
outlet slit angle
discharge ratio
coanda effect
Eppler 473
url https://www.mdpi.com/1996-1073/16/4/1633
work_keys_str_mv AT vedantjoshi determinationofoptimumoutletslitthicknessandoutletangleforthebladelessfanusingthecfdapproach
AT wedynnoronha determinationofoptimumoutletslitthicknessandoutletangleforthebladelessfanusingthecfdapproach
AT vinayagamurthyg determinationofoptimumoutletslitthicknessandoutletangleforthebladelessfanusingthecfdapproach
AT sivakumarr determinationofoptimumoutletslitthicknessandoutletangleforthebladelessfanusingthecfdapproach
AT rajasekarababukb determinationofoptimumoutletslitthicknessandoutletangleforthebladelessfanusingthecfdapproach