Spatio-temporal genetic structure of Anopheles gambiae in the Northwestern Lake Victoria Basin, Uganda: implications for genetic control trials in malaria endemic regions
Abstract Background Understanding population genetic structure in the malaria vector Anopheles gambiae (s.s.) is crucial to inform genetic control and manage insecticide resistance. Unfortunately, species characteristics such as high nucleotide diversity, large effective population size, recent rang...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2018-04-01
|
Series: | Parasites & Vectors |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13071-018-2826-4 |
_version_ | 1811203297616330752 |
---|---|
author | Martin Lukindu Christina M. Bergey Rachel M. Wiltshire Scott T. Small Brian P. Bourke Jonathan K. Kayondo Nora J. Besansky |
author_facet | Martin Lukindu Christina M. Bergey Rachel M. Wiltshire Scott T. Small Brian P. Bourke Jonathan K. Kayondo Nora J. Besansky |
author_sort | Martin Lukindu |
collection | DOAJ |
description | Abstract Background Understanding population genetic structure in the malaria vector Anopheles gambiae (s.s.) is crucial to inform genetic control and manage insecticide resistance. Unfortunately, species characteristics such as high nucleotide diversity, large effective population size, recent range expansion, and high dispersal ability complicate the inference of genetic structure across its range in sub-Saharan Africa. The ocean, along with the Great Rift Valley, is one of the few recognized barriers to gene flow in this species, but the effect of inland lakes, which could be useful sites for initial testing of genetic control strategies, is relatively understudied. Here we examine Lake Victoria as a barrier between the Ugandan mainland and the Ssese Islands, which lie up to 60 km offshore. We use mitochondrial DNA (mtDNA) from populations sampled in 2002, 2012 and 2015, and perform Bayesian cluster analysis on mtDNA combined with microsatellite data previously generated from the same 2002 mosquito DNA samples. Results Hierarchical analysis of molecular variance and Bayesian clustering support significant differentiation between the mainland and lacustrine islands. In an mtDNA haplotype network constructed from this and previous data, haplotypes are shared even between localities separated by the Rift Valley, a result that more likely reflects retention of shared ancestral polymorphism than contemporary gene flow. Conclusions The relative genetic isolation of An. gambiae on the Ssese Islands, their small size, level terrain and ease of access from the mainland, the relative simplicity of the vectorial system, and the prevalence of malaria, are all attributes that recommend these islands as possible sites for the testing of genetic control strategies. |
first_indexed | 2024-04-12T02:53:14Z |
format | Article |
id | doaj.art-cbe6a048bed7424ead9d12cd3c368294 |
institution | Directory Open Access Journal |
issn | 1756-3305 |
language | English |
last_indexed | 2024-04-12T02:53:14Z |
publishDate | 2018-04-01 |
publisher | BMC |
record_format | Article |
series | Parasites & Vectors |
spelling | doaj.art-cbe6a048bed7424ead9d12cd3c3682942022-12-22T03:50:56ZengBMCParasites & Vectors1756-33052018-04-0111111210.1186/s13071-018-2826-4Spatio-temporal genetic structure of Anopheles gambiae in the Northwestern Lake Victoria Basin, Uganda: implications for genetic control trials in malaria endemic regionsMartin Lukindu0Christina M. Bergey1Rachel M. Wiltshire2Scott T. Small3Brian P. Bourke4Jonathan K. Kayondo5Nora J. Besansky6Department of Biological Sciences and Eck Institute for Global Health, University of Notre DameDepartment of Biological Sciences and Eck Institute for Global Health, University of Notre DameDepartment of Biological Sciences and Eck Institute for Global Health, University of Notre DameDepartment of Biological Sciences and Eck Institute for Global Health, University of Notre DameDepartment of Biological Sciences and Eck Institute for Global Health, University of Notre DameDepartment of Entomology, Uganda Virus Research Institute (UVRI)Department of Biological Sciences and Eck Institute for Global Health, University of Notre DameAbstract Background Understanding population genetic structure in the malaria vector Anopheles gambiae (s.s.) is crucial to inform genetic control and manage insecticide resistance. Unfortunately, species characteristics such as high nucleotide diversity, large effective population size, recent range expansion, and high dispersal ability complicate the inference of genetic structure across its range in sub-Saharan Africa. The ocean, along with the Great Rift Valley, is one of the few recognized barriers to gene flow in this species, but the effect of inland lakes, which could be useful sites for initial testing of genetic control strategies, is relatively understudied. Here we examine Lake Victoria as a barrier between the Ugandan mainland and the Ssese Islands, which lie up to 60 km offshore. We use mitochondrial DNA (mtDNA) from populations sampled in 2002, 2012 and 2015, and perform Bayesian cluster analysis on mtDNA combined with microsatellite data previously generated from the same 2002 mosquito DNA samples. Results Hierarchical analysis of molecular variance and Bayesian clustering support significant differentiation between the mainland and lacustrine islands. In an mtDNA haplotype network constructed from this and previous data, haplotypes are shared even between localities separated by the Rift Valley, a result that more likely reflects retention of shared ancestral polymorphism than contemporary gene flow. Conclusions The relative genetic isolation of An. gambiae on the Ssese Islands, their small size, level terrain and ease of access from the mainland, the relative simplicity of the vectorial system, and the prevalence of malaria, are all attributes that recommend these islands as possible sites for the testing of genetic control strategies.http://link.springer.com/article/10.1186/s13071-018-2826-4Anopheles gambiaeGene flowLacustrine islandsMalariaMitochondrial DNAPopulation genetic structure |
spellingShingle | Martin Lukindu Christina M. Bergey Rachel M. Wiltshire Scott T. Small Brian P. Bourke Jonathan K. Kayondo Nora J. Besansky Spatio-temporal genetic structure of Anopheles gambiae in the Northwestern Lake Victoria Basin, Uganda: implications for genetic control trials in malaria endemic regions Parasites & Vectors Anopheles gambiae Gene flow Lacustrine islands Malaria Mitochondrial DNA Population genetic structure |
title | Spatio-temporal genetic structure of Anopheles gambiae in the Northwestern Lake Victoria Basin, Uganda: implications for genetic control trials in malaria endemic regions |
title_full | Spatio-temporal genetic structure of Anopheles gambiae in the Northwestern Lake Victoria Basin, Uganda: implications for genetic control trials in malaria endemic regions |
title_fullStr | Spatio-temporal genetic structure of Anopheles gambiae in the Northwestern Lake Victoria Basin, Uganda: implications for genetic control trials in malaria endemic regions |
title_full_unstemmed | Spatio-temporal genetic structure of Anopheles gambiae in the Northwestern Lake Victoria Basin, Uganda: implications for genetic control trials in malaria endemic regions |
title_short | Spatio-temporal genetic structure of Anopheles gambiae in the Northwestern Lake Victoria Basin, Uganda: implications for genetic control trials in malaria endemic regions |
title_sort | spatio temporal genetic structure of anopheles gambiae in the northwestern lake victoria basin uganda implications for genetic control trials in malaria endemic regions |
topic | Anopheles gambiae Gene flow Lacustrine islands Malaria Mitochondrial DNA Population genetic structure |
url | http://link.springer.com/article/10.1186/s13071-018-2826-4 |
work_keys_str_mv | AT martinlukindu spatiotemporalgeneticstructureofanophelesgambiaeinthenorthwesternlakevictoriabasinugandaimplicationsforgeneticcontroltrialsinmalariaendemicregions AT christinambergey spatiotemporalgeneticstructureofanophelesgambiaeinthenorthwesternlakevictoriabasinugandaimplicationsforgeneticcontroltrialsinmalariaendemicregions AT rachelmwiltshire spatiotemporalgeneticstructureofanophelesgambiaeinthenorthwesternlakevictoriabasinugandaimplicationsforgeneticcontroltrialsinmalariaendemicregions AT scotttsmall spatiotemporalgeneticstructureofanophelesgambiaeinthenorthwesternlakevictoriabasinugandaimplicationsforgeneticcontroltrialsinmalariaendemicregions AT brianpbourke spatiotemporalgeneticstructureofanophelesgambiaeinthenorthwesternlakevictoriabasinugandaimplicationsforgeneticcontroltrialsinmalariaendemicregions AT jonathankkayondo spatiotemporalgeneticstructureofanophelesgambiaeinthenorthwesternlakevictoriabasinugandaimplicationsforgeneticcontroltrialsinmalariaendemicregions AT norajbesansky spatiotemporalgeneticstructureofanophelesgambiaeinthenorthwesternlakevictoriabasinugandaimplicationsforgeneticcontroltrialsinmalariaendemicregions |