Information Geometry of Spatially Periodic Stochastic Systems

We explore the effect of different spatially periodic, deterministic forces on the information geometry of stochastic processes. The three forces considered are <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="bold&qu...

Full description

Bibliographic Details
Main Authors: Rainer Hollerbach, Eun-jin Kim
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/21/7/681
_version_ 1818014795848220672
author Rainer Hollerbach
Eun-jin Kim
author_facet Rainer Hollerbach
Eun-jin Kim
author_sort Rainer Hollerbach
collection DOAJ
description We explore the effect of different spatially periodic, deterministic forces on the information geometry of stochastic processes. The three forces considered are <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="bold">f</mi> <mn mathvariant="bold">0</mn> </msub> <mo>=</mo> <mo form="prefix">sin</mo> <mrow> <mo>(</mo> <mi>&#960;</mi> <mi>x</mi> <mo>)</mo> </mrow> <mo>/</mo> <mi>&#960;</mi> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="bold">f</mi> <mo>&#177;</mo> </msub> <mspace width="3.33333pt"></mspace> <mo>=</mo> <mspace width="3.33333pt"></mspace> <mo form="prefix">sin</mo> <mrow> <mo>(</mo> <mi>&#960;</mi> <mi>x</mi> <mo>)</mo> </mrow> <mo>/</mo> <mi>&#960;</mi> <mo>&#177;</mo> <mo form="prefix">sin</mo> <mrow> <mo>(</mo> <mn>2</mn> <mi>&#960;</mi> <mi>x</mi> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mi>&#960;</mi> </mrow> </semantics> </math> </inline-formula>, with <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="bold">f</mi> <mo>-</mo> </msub> </semantics> </math> </inline-formula> chosen to be particularly flat (locally cubic) at the equilibrium point <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="bold">f</mi> <mo>+</mo> </msub> </semantics> </math> </inline-formula> particularly flat at the unstable fixed point <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>. We numerically solve the Fokker&#8722;Planck equation with an initial condition consisting of a periodically repeated Gaussian peak centred at <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>=</mo> <mi>&#956;</mi> </mrow> </semantics> </math> </inline-formula>, with <inline-formula> <math display="inline"> <semantics> <mi>&#956;</mi> </semantics> </math> </inline-formula> in the range <inline-formula> <math display="inline"> <semantics> <mrow> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics> </math> </inline-formula>. The strength <i>D</i> of the stochastic noise is in the range <inline-formula> <math display="inline"> <semantics> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>4</mn> </mrow> </msup> </semantics> </math> </inline-formula>&#8722;<inline-formula> <math display="inline"> <semantics> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>6</mn> </mrow> </msup> </semantics> </math> </inline-formula>. We study the details of how these initial conditions evolve toward the final equilibrium solutions and elucidate the important consequences of the interplay between an initial PDF and a force. For initial positions close to the equilibrium point <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>, the peaks largely maintain their shape while moving. In contrast, for initial positions sufficiently close to the unstable point <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, there is a tendency for the peak to slump in place and broaden considerably before reconstituting itself at the equilibrium point. A consequence of this is that the information length <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">L</mi> <mo>&#8734;</mo> </msub> </semantics> </math> </inline-formula>, the total number of statistically distinguishable states that the system evolves through, is smaller for initial positions closer to the unstable point than for more intermediate values. We find that <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">L</mi> <mo>&#8734;</mo> </msub> </semantics> </math> </inline-formula> as a function of initial position <inline-formula> <math display="inline"> <semantics> <mi>&#956;</mi> </semantics> </math> </inline-formula> is qualitatively similar to the force, including the differences between <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="bold">f</mi> <mn mathvariant="bold">0</mn> </msub> <mo>=</mo> <mo form="prefix">sin</mo> <mrow> <mo>(</mo> <mi>&#960;</mi> <mi>x</mi> <mo>)</mo> </mrow> <mo>/</mo> <mi>&#960;</mi> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="bold">f</mi> <mo>&#177;</mo> </msub> <mo>=</mo> <mo form="prefix">sin</mo> <mrow> <mo>(</mo> <mi>&#960;</mi> <mi>x</mi> <mo>)</mo> </mrow> <mo>/</mo> <mi>&#960;</mi> <mo>&#177;</mo> <mo form="prefix">sin</mo> <mrow> <mo>(</mo> <mn>2</mn> <mi>&#960;</mi> <mi>x</mi> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mi>&#960;</mi> </mrow> </semantics> </math> </inline-formula>, illustrating the value of information length as a useful diagnostic of the underlying force in the system.
first_indexed 2024-04-14T06:48:54Z
format Article
id doaj.art-cbf3a829383346dab3b12ff863b7eb10
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-04-14T06:48:54Z
publishDate 2019-07-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-cbf3a829383346dab3b12ff863b7eb102022-12-22T02:07:05ZengMDPI AGEntropy1099-43002019-07-0121768110.3390/e21070681e21070681Information Geometry of Spatially Periodic Stochastic SystemsRainer Hollerbach0Eun-jin Kim1Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UKSchool of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UKWe explore the effect of different spatially periodic, deterministic forces on the information geometry of stochastic processes. The three forces considered are <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="bold">f</mi> <mn mathvariant="bold">0</mn> </msub> <mo>=</mo> <mo form="prefix">sin</mo> <mrow> <mo>(</mo> <mi>&#960;</mi> <mi>x</mi> <mo>)</mo> </mrow> <mo>/</mo> <mi>&#960;</mi> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="bold">f</mi> <mo>&#177;</mo> </msub> <mspace width="3.33333pt"></mspace> <mo>=</mo> <mspace width="3.33333pt"></mspace> <mo form="prefix">sin</mo> <mrow> <mo>(</mo> <mi>&#960;</mi> <mi>x</mi> <mo>)</mo> </mrow> <mo>/</mo> <mi>&#960;</mi> <mo>&#177;</mo> <mo form="prefix">sin</mo> <mrow> <mo>(</mo> <mn>2</mn> <mi>&#960;</mi> <mi>x</mi> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mi>&#960;</mi> </mrow> </semantics> </math> </inline-formula>, with <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="bold">f</mi> <mo>-</mo> </msub> </semantics> </math> </inline-formula> chosen to be particularly flat (locally cubic) at the equilibrium point <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="bold">f</mi> <mo>+</mo> </msub> </semantics> </math> </inline-formula> particularly flat at the unstable fixed point <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>. We numerically solve the Fokker&#8722;Planck equation with an initial condition consisting of a periodically repeated Gaussian peak centred at <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>=</mo> <mi>&#956;</mi> </mrow> </semantics> </math> </inline-formula>, with <inline-formula> <math display="inline"> <semantics> <mi>&#956;</mi> </semantics> </math> </inline-formula> in the range <inline-formula> <math display="inline"> <semantics> <mrow> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics> </math> </inline-formula>. The strength <i>D</i> of the stochastic noise is in the range <inline-formula> <math display="inline"> <semantics> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>4</mn> </mrow> </msup> </semantics> </math> </inline-formula>&#8722;<inline-formula> <math display="inline"> <semantics> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>6</mn> </mrow> </msup> </semantics> </math> </inline-formula>. We study the details of how these initial conditions evolve toward the final equilibrium solutions and elucidate the important consequences of the interplay between an initial PDF and a force. For initial positions close to the equilibrium point <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>, the peaks largely maintain their shape while moving. In contrast, for initial positions sufficiently close to the unstable point <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, there is a tendency for the peak to slump in place and broaden considerably before reconstituting itself at the equilibrium point. A consequence of this is that the information length <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">L</mi> <mo>&#8734;</mo> </msub> </semantics> </math> </inline-formula>, the total number of statistically distinguishable states that the system evolves through, is smaller for initial positions closer to the unstable point than for more intermediate values. We find that <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">L</mi> <mo>&#8734;</mo> </msub> </semantics> </math> </inline-formula> as a function of initial position <inline-formula> <math display="inline"> <semantics> <mi>&#956;</mi> </semantics> </math> </inline-formula> is qualitatively similar to the force, including the differences between <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="bold">f</mi> <mn mathvariant="bold">0</mn> </msub> <mo>=</mo> <mo form="prefix">sin</mo> <mrow> <mo>(</mo> <mi>&#960;</mi> <mi>x</mi> <mo>)</mo> </mrow> <mo>/</mo> <mi>&#960;</mi> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="bold">f</mi> <mo>&#177;</mo> </msub> <mo>=</mo> <mo form="prefix">sin</mo> <mrow> <mo>(</mo> <mi>&#960;</mi> <mi>x</mi> <mo>)</mo> </mrow> <mo>/</mo> <mi>&#960;</mi> <mo>&#177;</mo> <mo form="prefix">sin</mo> <mrow> <mo>(</mo> <mn>2</mn> <mi>&#960;</mi> <mi>x</mi> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mi>&#960;</mi> </mrow> </semantics> </math> </inline-formula>, illustrating the value of information length as a useful diagnostic of the underlying force in the system.https://www.mdpi.com/1099-4300/21/7/681stochastic processesFokker–Planck equationinformation length
spellingShingle Rainer Hollerbach
Eun-jin Kim
Information Geometry of Spatially Periodic Stochastic Systems
Entropy
stochastic processes
Fokker–Planck equation
information length
title Information Geometry of Spatially Periodic Stochastic Systems
title_full Information Geometry of Spatially Periodic Stochastic Systems
title_fullStr Information Geometry of Spatially Periodic Stochastic Systems
title_full_unstemmed Information Geometry of Spatially Periodic Stochastic Systems
title_short Information Geometry of Spatially Periodic Stochastic Systems
title_sort information geometry of spatially periodic stochastic systems
topic stochastic processes
Fokker–Planck equation
information length
url https://www.mdpi.com/1099-4300/21/7/681
work_keys_str_mv AT rainerhollerbach informationgeometryofspatiallyperiodicstochasticsystems
AT eunjinkim informationgeometryofspatiallyperiodicstochasticsystems