Endoplasmic reticulum stress promoted acinar cell necroptosis in acute pancreatitis through cathepsinB-mediated AP-1 activation
Acinar cell death and inflammatory response are two important events which determine the severity of acute pancreatitis (AP). Endoplasmic reticulum (ER) stress and necroptosis are involved in this process, but the relationships between them remain unknown. Here, we analyzed the interaction between E...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2022-08-01
|
Series: | Frontiers in Immunology |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fimmu.2022.968639/full |
_version_ | 1798037607212384256 |
---|---|
author | Xiao Han Xiao Han Bin Li Bin Li Jingpiao Bao Jingpiao Bao Zengkai Wu Zengkai Wu Congying Chen Congying Chen Jianbo Ni Jianbo Ni Jie Shen Jie Shen Pengli Song Pengli Song Qi Peng Qi Peng Rong Wan Rong Wan Xingpeng Wang Xingpeng Wang Jianghong Wu Jianghong Wu Guoyong Hu Guoyong Hu |
author_facet | Xiao Han Xiao Han Bin Li Bin Li Jingpiao Bao Jingpiao Bao Zengkai Wu Zengkai Wu Congying Chen Congying Chen Jianbo Ni Jianbo Ni Jie Shen Jie Shen Pengli Song Pengli Song Qi Peng Qi Peng Rong Wan Rong Wan Xingpeng Wang Xingpeng Wang Jianghong Wu Jianghong Wu Guoyong Hu Guoyong Hu |
author_sort | Xiao Han |
collection | DOAJ |
description | Acinar cell death and inflammatory response are two important events which determine the severity of acute pancreatitis (AP). Endoplasmic reticulum (ER) stress and necroptosis are involved in this process, but the relationships between them remain unknown. Here, we analyzed the interaction between ER stress and necroptosis and the underlying mechanisms during AP. Experimental pancreatitis was induced in Balb/C mice by caerulein (Cae) and lipopolysaccharide (LPS) or L-arginine (L-Arg) in vivo, and pancreatic acinar cells were also used to follow cellular mechanisms during cholecystokinin (CCK) stimulation in vitro. AP severity was assessed by serum amylase, lipase levels and histological examination. Changes in ER stress, trypsinogen activation and necroptosis levels were analyzed by western blotting, enzyme-linked immunosorbent assay (ELISA), adenosine triphosphate (ATP) analysis or lactate dehydrogenase (LDH) assay. The protein kinase C (PKC)α -mitogen-activated protein kinase (MAPK) -cJun pathway and cathepsin B (CTSB) activation were evaluated by western blotting. Activating protein 1 (AP-1) binding activity was detected by electrophoretic mobility shift assay (EMSA). We found that ER stress is initiated before necroptosis in CCK-stimulated acinar cells in vitro. Inhibition of ER stress by 4-phenylbutyrate (4-PBA) can significantly alleviate AP severity both in two AP models in vivo. 4-PBA markedly inhibited ER stress and necroptosis of pancreatic acinar cells both in vitro and in vivo. Mechanistically, we found that 4-PBA significantly reduced CTSB maturation and PKCα-JNK-cJun pathway -mediated AP-1 activation during AP. Besides, CTSB inhibitor CA074Me markedly blocked PKCα-JNK-cJun pathway -mediated AP-1 activation and necroptosis in AP. However, pharmacologic inhibition of trypsin activity with benzamidine hydrochloride had no effect on PKCα-JNK-cJun pathway and necroptosis in CCK-stimulated pancreatic acinar cells. Furthermore, SR11302, the inhibitor of AP-1, significantly lowered tumor necrosis factor (TNF) α levels, and its subsequent receptor interacting protein kinases (RIP)3 and phosphorylated mixed lineagekinase domain-like (pMLKL) levels, ATP depletion and LDH release rate in CCK-stimulated pancreatic acinar cells. To sum up, all the results indicated that during AP, ER stress promoted pancreatic acinar cell necroptosis through CTSB maturation, thus induced AP-1 activation and TNFα secretion via PKCα-JNK-cJun pathway, not related with trypsin activity. These findings provided potential therapeutic target and treatment strategies for AP or other cell death-related diseases. |
first_indexed | 2024-04-11T21:28:51Z |
format | Article |
id | doaj.art-cc041248bfa6446ab62febd1958ee137 |
institution | Directory Open Access Journal |
issn | 1664-3224 |
language | English |
last_indexed | 2024-04-11T21:28:51Z |
publishDate | 2022-08-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Immunology |
spelling | doaj.art-cc041248bfa6446ab62febd1958ee1372022-12-22T04:02:17ZengFrontiers Media S.A.Frontiers in Immunology1664-32242022-08-011310.3389/fimmu.2022.968639968639Endoplasmic reticulum stress promoted acinar cell necroptosis in acute pancreatitis through cathepsinB-mediated AP-1 activationXiao Han0Xiao Han1Bin Li2Bin Li3Jingpiao Bao4Jingpiao Bao5Zengkai Wu6Zengkai Wu7Congying Chen8Congying Chen9Jianbo Ni10Jianbo Ni11Jie Shen12Jie Shen13Pengli Song14Pengli Song15Qi Peng16Qi Peng17Rong Wan18Rong Wan19Xingpeng Wang20Xingpeng Wang21Jianghong Wu22Jianghong Wu23Guoyong Hu24Guoyong Hu25Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaShanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaDepartment of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaShanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaDepartment of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaShanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaDepartment of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaShanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaDepartment of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaShanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaDepartment of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaShanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaDepartment of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaShanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaDepartment of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaShanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaDepartment of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaShanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaDepartment of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaShanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaDepartment of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaShanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaDepartment of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaShanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaDepartment of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaShanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaAcinar cell death and inflammatory response are two important events which determine the severity of acute pancreatitis (AP). Endoplasmic reticulum (ER) stress and necroptosis are involved in this process, but the relationships between them remain unknown. Here, we analyzed the interaction between ER stress and necroptosis and the underlying mechanisms during AP. Experimental pancreatitis was induced in Balb/C mice by caerulein (Cae) and lipopolysaccharide (LPS) or L-arginine (L-Arg) in vivo, and pancreatic acinar cells were also used to follow cellular mechanisms during cholecystokinin (CCK) stimulation in vitro. AP severity was assessed by serum amylase, lipase levels and histological examination. Changes in ER stress, trypsinogen activation and necroptosis levels were analyzed by western blotting, enzyme-linked immunosorbent assay (ELISA), adenosine triphosphate (ATP) analysis or lactate dehydrogenase (LDH) assay. The protein kinase C (PKC)α -mitogen-activated protein kinase (MAPK) -cJun pathway and cathepsin B (CTSB) activation were evaluated by western blotting. Activating protein 1 (AP-1) binding activity was detected by electrophoretic mobility shift assay (EMSA). We found that ER stress is initiated before necroptosis in CCK-stimulated acinar cells in vitro. Inhibition of ER stress by 4-phenylbutyrate (4-PBA) can significantly alleviate AP severity both in two AP models in vivo. 4-PBA markedly inhibited ER stress and necroptosis of pancreatic acinar cells both in vitro and in vivo. Mechanistically, we found that 4-PBA significantly reduced CTSB maturation and PKCα-JNK-cJun pathway -mediated AP-1 activation during AP. Besides, CTSB inhibitor CA074Me markedly blocked PKCα-JNK-cJun pathway -mediated AP-1 activation and necroptosis in AP. However, pharmacologic inhibition of trypsin activity with benzamidine hydrochloride had no effect on PKCα-JNK-cJun pathway and necroptosis in CCK-stimulated pancreatic acinar cells. Furthermore, SR11302, the inhibitor of AP-1, significantly lowered tumor necrosis factor (TNF) α levels, and its subsequent receptor interacting protein kinases (RIP)3 and phosphorylated mixed lineagekinase domain-like (pMLKL) levels, ATP depletion and LDH release rate in CCK-stimulated pancreatic acinar cells. To sum up, all the results indicated that during AP, ER stress promoted pancreatic acinar cell necroptosis through CTSB maturation, thus induced AP-1 activation and TNFα secretion via PKCα-JNK-cJun pathway, not related with trypsin activity. These findings provided potential therapeutic target and treatment strategies for AP or other cell death-related diseases.https://www.frontiersin.org/articles/10.3389/fimmu.2022.968639/fullacute pancreatitisendoplasmic reticulum stressnecroptosiscathepsin Bactivating protein-1 |
spellingShingle | Xiao Han Xiao Han Bin Li Bin Li Jingpiao Bao Jingpiao Bao Zengkai Wu Zengkai Wu Congying Chen Congying Chen Jianbo Ni Jianbo Ni Jie Shen Jie Shen Pengli Song Pengli Song Qi Peng Qi Peng Rong Wan Rong Wan Xingpeng Wang Xingpeng Wang Jianghong Wu Jianghong Wu Guoyong Hu Guoyong Hu Endoplasmic reticulum stress promoted acinar cell necroptosis in acute pancreatitis through cathepsinB-mediated AP-1 activation Frontiers in Immunology acute pancreatitis endoplasmic reticulum stress necroptosis cathepsin B activating protein-1 |
title | Endoplasmic reticulum stress promoted acinar cell necroptosis in acute pancreatitis through cathepsinB-mediated AP-1 activation |
title_full | Endoplasmic reticulum stress promoted acinar cell necroptosis in acute pancreatitis through cathepsinB-mediated AP-1 activation |
title_fullStr | Endoplasmic reticulum stress promoted acinar cell necroptosis in acute pancreatitis through cathepsinB-mediated AP-1 activation |
title_full_unstemmed | Endoplasmic reticulum stress promoted acinar cell necroptosis in acute pancreatitis through cathepsinB-mediated AP-1 activation |
title_short | Endoplasmic reticulum stress promoted acinar cell necroptosis in acute pancreatitis through cathepsinB-mediated AP-1 activation |
title_sort | endoplasmic reticulum stress promoted acinar cell necroptosis in acute pancreatitis through cathepsinb mediated ap 1 activation |
topic | acute pancreatitis endoplasmic reticulum stress necroptosis cathepsin B activating protein-1 |
url | https://www.frontiersin.org/articles/10.3389/fimmu.2022.968639/full |
work_keys_str_mv | AT xiaohan endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT xiaohan endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT binli endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT binli endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT jingpiaobao endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT jingpiaobao endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT zengkaiwu endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT zengkaiwu endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT congyingchen endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT congyingchen endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT jianboni endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT jianboni endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT jieshen endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT jieshen endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT penglisong endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT penglisong endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT qipeng endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT qipeng endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT rongwan endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT rongwan endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT xingpengwang endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT xingpengwang endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT jianghongwu endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT jianghongwu endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT guoyonghu endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation AT guoyonghu endoplasmicreticulumstresspromotedacinarcellnecroptosisinacutepancreatitisthroughcathepsinbmediatedap1activation |