Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas

Mapping forest AGB (Above Ground Biomass) is of crucial importance to estimate the carbon emissions associated with tropical deforestation. This study proposes a method to overcome the saturation at high AGB values of existing AGB map (Vieilledent’s AGB map) by using a map of correction factors gene...

Full description

Bibliographic Details
Main Authors: Mohammad El Hajj, Nicolas Baghdadi, Ibrahim Fayad, Ghislain Vieilledent, Jean-Stéphane Bailly, Dinh Ho Tong Minh
Format: Article
Language:English
Published: MDPI AG 2017-02-01
Series:Remote Sensing
Subjects:
Online Access:http://www.mdpi.com/2072-4292/9/3/213
_version_ 1819002286834188288
author Mohammad El Hajj
Nicolas Baghdadi
Ibrahim Fayad
Ghislain Vieilledent
Jean-Stéphane Bailly
Dinh Ho Tong Minh
author_facet Mohammad El Hajj
Nicolas Baghdadi
Ibrahim Fayad
Ghislain Vieilledent
Jean-Stéphane Bailly
Dinh Ho Tong Minh
author_sort Mohammad El Hajj
collection DOAJ
description Mapping forest AGB (Above Ground Biomass) is of crucial importance to estimate the carbon emissions associated with tropical deforestation. This study proposes a method to overcome the saturation at high AGB values of existing AGB map (Vieilledent’s AGB map) by using a map of correction factors generated from GLAS (Geoscience Laser Altimeter System) spaceborne LiDAR data. The Vieilledent’s AGB map of Madagascar was established using optical images, with parameters calculated from the SRTM Digital Elevation Model, climatic variables, and field inventories. In the present study, first, GLAS LiDAR data were used to obtain a spatially distributed (GLAS footprints geolocation) estimation of AGB (GLAS AGB) covering Madagascar forested areas, with a density of 0.52 footprint/km2. Second, the difference between the AGB from the Vieilledent’s AGB map and GLAS AGB at each GLAS footprint location was calculated, and additional spatially distributed correction factors were obtained. Third, an ordinary kriging interpolation was thus performed by taking into account the spatial structure of these additional correction factors to provide a continuous correction factor map. Finally, the existing and the correction factor maps were summed to improve the Vieilledent’s AGB map. The results showed that the integration of GLAS data improves the precision of Vieilledent’s AGB map by approximately 7 t/ha. By integrating GLAS data, the RMSE on AGB estimates decreases from 81 t/ha (R2 = 0.62) to 74.1 t/ha (R2 = 0.71). Most importantly, we showed that this approach using LiDAR data avoids underestimating high biomass values (new maximum AGB of 650 t/ha compared to 550 t/ha with the first approach).
first_indexed 2024-12-20T23:02:42Z
format Article
id doaj.art-cc1e943ba6454eb7949f5534eafae92c
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-12-20T23:02:42Z
publishDate 2017-02-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-cc1e943ba6454eb7949f5534eafae92c2022-12-21T19:23:57ZengMDPI AGRemote Sensing2072-42922017-02-019321310.3390/rs9030213rs9030213Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested AreasMohammad El Hajj0Nicolas Baghdadi1Ibrahim Fayad2Ghislain Vieilledent3Jean-Stéphane Bailly4Dinh Ho Tong Minh5Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (Irstea), Unité Mixte de Recherche (UMR) Territoires, Environnement, Télédétection et Information Spatiale (TETIS), 500 rue Jean François Breton, 34093 Montpellier CEDEX 5, FranceInstitut national de recherche en sciences et technologies pour l'environnement et l'agriculture (Irstea), Unité Mixte de Recherche (UMR) Territoires, Environnement, Télédétection et Information Spatiale (TETIS), 500 rue Jean François Breton, 34093 Montpellier CEDEX 5, FranceInstitut national de recherche en sciences et technologies pour l'environnement et l'agriculture (Irstea), Unité Mixte de Recherche (UMR) Territoires, Environnement, Télédétection et Information Spatiale (TETIS), 500 rue Jean François Breton, 34093 Montpellier CEDEX 5, FranceCentre de coopération internationale en recherche agronomique pour le développement (Cirad), Unité Propre de Recherche (UPR) Forêts et Sociétés (F&S), F-34398, Montpellier, FranceAgroParisTech, Unité Mixte de Recherche (UMR) Laboratoire d’étude des interactions Sol-Agrosystème- Hydrosystème (LISAH), 2 place Pierre Viala, 34060 Montpellier, FranceInstitut national de recherche en sciences et technologies pour l'environnement et l'agriculture (Irstea), Unité Mixte de Recherche (UMR) Territoires, Environnement, Télédétection et Information Spatiale (TETIS), 500 rue Jean François Breton, 34093 Montpellier CEDEX 5, FranceMapping forest AGB (Above Ground Biomass) is of crucial importance to estimate the carbon emissions associated with tropical deforestation. This study proposes a method to overcome the saturation at high AGB values of existing AGB map (Vieilledent’s AGB map) by using a map of correction factors generated from GLAS (Geoscience Laser Altimeter System) spaceborne LiDAR data. The Vieilledent’s AGB map of Madagascar was established using optical images, with parameters calculated from the SRTM Digital Elevation Model, climatic variables, and field inventories. In the present study, first, GLAS LiDAR data were used to obtain a spatially distributed (GLAS footprints geolocation) estimation of AGB (GLAS AGB) covering Madagascar forested areas, with a density of 0.52 footprint/km2. Second, the difference between the AGB from the Vieilledent’s AGB map and GLAS AGB at each GLAS footprint location was calculated, and additional spatially distributed correction factors were obtained. Third, an ordinary kriging interpolation was thus performed by taking into account the spatial structure of these additional correction factors to provide a continuous correction factor map. Finally, the existing and the correction factor maps were summed to improve the Vieilledent’s AGB map. The results showed that the integration of GLAS data improves the precision of Vieilledent’s AGB map by approximately 7 t/ha. By integrating GLAS data, the RMSE on AGB estimates decreases from 81 t/ha (R2 = 0.62) to 74.1 t/ha (R2 = 0.71). Most importantly, we showed that this approach using LiDAR data avoids underestimating high biomass values (new maximum AGB of 650 t/ha compared to 550 t/ha with the first approach).http://www.mdpi.com/2072-4292/9/3/213aboveground biomass mappingLiDARICESat GALSfield inventories
spellingShingle Mohammad El Hajj
Nicolas Baghdadi
Ibrahim Fayad
Ghislain Vieilledent
Jean-Stéphane Bailly
Dinh Ho Tong Minh
Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas
Remote Sensing
aboveground biomass mapping
LiDAR
ICESat GALS
field inventories
title Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas
title_full Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas
title_fullStr Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas
title_full_unstemmed Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas
title_short Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas
title_sort interest of integrating spaceborne lidar data to improve the estimation of biomass in high biomass forested areas
topic aboveground biomass mapping
LiDAR
ICESat GALS
field inventories
url http://www.mdpi.com/2072-4292/9/3/213
work_keys_str_mv AT mohammadelhajj interestofintegratingspacebornelidardatatoimprovetheestimationofbiomassinhighbiomassforestedareas
AT nicolasbaghdadi interestofintegratingspacebornelidardatatoimprovetheestimationofbiomassinhighbiomassforestedareas
AT ibrahimfayad interestofintegratingspacebornelidardatatoimprovetheestimationofbiomassinhighbiomassforestedareas
AT ghislainvieilledent interestofintegratingspacebornelidardatatoimprovetheestimationofbiomassinhighbiomassforestedareas
AT jeanstephanebailly interestofintegratingspacebornelidardatatoimprovetheestimationofbiomassinhighbiomassforestedareas
AT dinhhotongminh interestofintegratingspacebornelidardatatoimprovetheestimationofbiomassinhighbiomassforestedareas