Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas
Mapping forest AGB (Above Ground Biomass) is of crucial importance to estimate the carbon emissions associated with tropical deforestation. This study proposes a method to overcome the saturation at high AGB values of existing AGB map (Vieilledent’s AGB map) by using a map of correction factors gene...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2017-02-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | http://www.mdpi.com/2072-4292/9/3/213 |
_version_ | 1819002286834188288 |
---|---|
author | Mohammad El Hajj Nicolas Baghdadi Ibrahim Fayad Ghislain Vieilledent Jean-Stéphane Bailly Dinh Ho Tong Minh |
author_facet | Mohammad El Hajj Nicolas Baghdadi Ibrahim Fayad Ghislain Vieilledent Jean-Stéphane Bailly Dinh Ho Tong Minh |
author_sort | Mohammad El Hajj |
collection | DOAJ |
description | Mapping forest AGB (Above Ground Biomass) is of crucial importance to estimate the carbon emissions associated with tropical deforestation. This study proposes a method to overcome the saturation at high AGB values of existing AGB map (Vieilledent’s AGB map) by using a map of correction factors generated from GLAS (Geoscience Laser Altimeter System) spaceborne LiDAR data. The Vieilledent’s AGB map of Madagascar was established using optical images, with parameters calculated from the SRTM Digital Elevation Model, climatic variables, and field inventories. In the present study, first, GLAS LiDAR data were used to obtain a spatially distributed (GLAS footprints geolocation) estimation of AGB (GLAS AGB) covering Madagascar forested areas, with a density of 0.52 footprint/km2. Second, the difference between the AGB from the Vieilledent’s AGB map and GLAS AGB at each GLAS footprint location was calculated, and additional spatially distributed correction factors were obtained. Third, an ordinary kriging interpolation was thus performed by taking into account the spatial structure of these additional correction factors to provide a continuous correction factor map. Finally, the existing and the correction factor maps were summed to improve the Vieilledent’s AGB map. The results showed that the integration of GLAS data improves the precision of Vieilledent’s AGB map by approximately 7 t/ha. By integrating GLAS data, the RMSE on AGB estimates decreases from 81 t/ha (R2 = 0.62) to 74.1 t/ha (R2 = 0.71). Most importantly, we showed that this approach using LiDAR data avoids underestimating high biomass values (new maximum AGB of 650 t/ha compared to 550 t/ha with the first approach). |
first_indexed | 2024-12-20T23:02:42Z |
format | Article |
id | doaj.art-cc1e943ba6454eb7949f5534eafae92c |
institution | Directory Open Access Journal |
issn | 2072-4292 |
language | English |
last_indexed | 2024-12-20T23:02:42Z |
publishDate | 2017-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Remote Sensing |
spelling | doaj.art-cc1e943ba6454eb7949f5534eafae92c2022-12-21T19:23:57ZengMDPI AGRemote Sensing2072-42922017-02-019321310.3390/rs9030213rs9030213Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested AreasMohammad El Hajj0Nicolas Baghdadi1Ibrahim Fayad2Ghislain Vieilledent3Jean-Stéphane Bailly4Dinh Ho Tong Minh5Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (Irstea), Unité Mixte de Recherche (UMR) Territoires, Environnement, Télédétection et Information Spatiale (TETIS), 500 rue Jean François Breton, 34093 Montpellier CEDEX 5, FranceInstitut national de recherche en sciences et technologies pour l'environnement et l'agriculture (Irstea), Unité Mixte de Recherche (UMR) Territoires, Environnement, Télédétection et Information Spatiale (TETIS), 500 rue Jean François Breton, 34093 Montpellier CEDEX 5, FranceInstitut national de recherche en sciences et technologies pour l'environnement et l'agriculture (Irstea), Unité Mixte de Recherche (UMR) Territoires, Environnement, Télédétection et Information Spatiale (TETIS), 500 rue Jean François Breton, 34093 Montpellier CEDEX 5, FranceCentre de coopération internationale en recherche agronomique pour le développement (Cirad), Unité Propre de Recherche (UPR) Forêts et Sociétés (F&S), F-34398, Montpellier, FranceAgroParisTech, Unité Mixte de Recherche (UMR) Laboratoire d’étude des interactions Sol-Agrosystème- Hydrosystème (LISAH), 2 place Pierre Viala, 34060 Montpellier, FranceInstitut national de recherche en sciences et technologies pour l'environnement et l'agriculture (Irstea), Unité Mixte de Recherche (UMR) Territoires, Environnement, Télédétection et Information Spatiale (TETIS), 500 rue Jean François Breton, 34093 Montpellier CEDEX 5, FranceMapping forest AGB (Above Ground Biomass) is of crucial importance to estimate the carbon emissions associated with tropical deforestation. This study proposes a method to overcome the saturation at high AGB values of existing AGB map (Vieilledent’s AGB map) by using a map of correction factors generated from GLAS (Geoscience Laser Altimeter System) spaceborne LiDAR data. The Vieilledent’s AGB map of Madagascar was established using optical images, with parameters calculated from the SRTM Digital Elevation Model, climatic variables, and field inventories. In the present study, first, GLAS LiDAR data were used to obtain a spatially distributed (GLAS footprints geolocation) estimation of AGB (GLAS AGB) covering Madagascar forested areas, with a density of 0.52 footprint/km2. Second, the difference between the AGB from the Vieilledent’s AGB map and GLAS AGB at each GLAS footprint location was calculated, and additional spatially distributed correction factors were obtained. Third, an ordinary kriging interpolation was thus performed by taking into account the spatial structure of these additional correction factors to provide a continuous correction factor map. Finally, the existing and the correction factor maps were summed to improve the Vieilledent’s AGB map. The results showed that the integration of GLAS data improves the precision of Vieilledent’s AGB map by approximately 7 t/ha. By integrating GLAS data, the RMSE on AGB estimates decreases from 81 t/ha (R2 = 0.62) to 74.1 t/ha (R2 = 0.71). Most importantly, we showed that this approach using LiDAR data avoids underestimating high biomass values (new maximum AGB of 650 t/ha compared to 550 t/ha with the first approach).http://www.mdpi.com/2072-4292/9/3/213aboveground biomass mappingLiDARICESat GALSfield inventories |
spellingShingle | Mohammad El Hajj Nicolas Baghdadi Ibrahim Fayad Ghislain Vieilledent Jean-Stéphane Bailly Dinh Ho Tong Minh Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas Remote Sensing aboveground biomass mapping LiDAR ICESat GALS field inventories |
title | Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas |
title_full | Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas |
title_fullStr | Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas |
title_full_unstemmed | Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas |
title_short | Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas |
title_sort | interest of integrating spaceborne lidar data to improve the estimation of biomass in high biomass forested areas |
topic | aboveground biomass mapping LiDAR ICESat GALS field inventories |
url | http://www.mdpi.com/2072-4292/9/3/213 |
work_keys_str_mv | AT mohammadelhajj interestofintegratingspacebornelidardatatoimprovetheestimationofbiomassinhighbiomassforestedareas AT nicolasbaghdadi interestofintegratingspacebornelidardatatoimprovetheestimationofbiomassinhighbiomassforestedareas AT ibrahimfayad interestofintegratingspacebornelidardatatoimprovetheestimationofbiomassinhighbiomassforestedareas AT ghislainvieilledent interestofintegratingspacebornelidardatatoimprovetheestimationofbiomassinhighbiomassforestedareas AT jeanstephanebailly interestofintegratingspacebornelidardatatoimprovetheestimationofbiomassinhighbiomassforestedareas AT dinhhotongminh interestofintegratingspacebornelidardatatoimprovetheestimationofbiomassinhighbiomassforestedareas |