Targeting NF-κB Signaling by Calebin A, a Compound of Turmeric, in Multicellular Tumor Microenvironment: Potential Role of Apoptosis Induction in CRC Cells

Increasing lines of evidence suggest that chronic inflammation mediates most chronic diseases, including cancer. The transcription factor, NF-κB, has been shown to be a major regulator of inflammation and metastasis in tumor cells. Therefore, compounds or any natural agents that can inhibit NF-κB ac...

Full description

Bibliographic Details
Main Authors: Constanze Buhrmann, Parviz Shayan, Kishore Banik, Ajaikumar B. Kunnumakkara, Peter Kubatka, Lenka Koklesova, Mehdi Shakibaei
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Biomedicines
Subjects:
Online Access:https://www.mdpi.com/2227-9059/8/8/236
Description
Summary:Increasing lines of evidence suggest that chronic inflammation mediates most chronic diseases, including cancer. The transcription factor, NF-κB, has been shown to be a major regulator of inflammation and metastasis in tumor cells. Therefore, compounds or any natural agents that can inhibit NF-κB activation have the potential to prevent and treat cancer. However, the mechanism by which Calebin A, a component of turmeric, regulates inflammation and disrupts the interaction between HCT116 colorectal cancer (CRC) cells and multicellular tumor microenvironment (TME) is still poorly understood. The 3D-alginate HCT116 cell cultures in TME were treated with Calebin A, BMS-345541, and dithiothreitol (DTT) and examined for invasiveness, proliferation, and apoptosis. The mechanism of TME-induced malignancy of cancer cells was confirmed by phase contrast, Western blotting, immunofluorescence, and DNA-binding assay. We found through DNA binding assay, that Calebin A inhibited TME-induced NF-κB activation in a dose-dependent manner. As a result of this inhibition, NF-κB phosphorylation and NF-κB nuclear translocation were down-modulated. Calebin A, or IκB-kinase (IKK) inhibitor (BMS-345541) significantly inhibited the direct interaction of nuclear p65 to DNA, and interestingly this interaction was reversed by DTT. Calebin A also suppressed the expression of NF-κB-promoted anti-apoptotic (Bcl-2, Bcl-xL, survivin), proliferation (Cyclin D1), invasion (MMP-9), metastasis (CXCR4), and down-regulated apoptosis (Caspase-3) gene biomarkers, leading to apoptosis in HCT116 cells. These results suggest that Calebin A can suppress multicellular TME-promoted CRC cell invasion and malignancy by inhibiting the NF-κB-promoting inflammatory pathway associated with carcinogenesis, underlining the potential of Calebin A for CRC treatment.
ISSN:2227-9059