Supplementing broiler diets with bacterial selenium nanoparticles enhancing performance, carcass traits, blood indices, antioxidant status, and caecal microbiota of Eimeria tenella-infected broiler chickens

ABSTRACT: Nanomedicine is a critical therapeutic approach for treating most poultry illnesses, particularly parasitic infections. Coccidiosis is a severe protozoan infection affecting poultry; the emergence of drug-resistant Eimeria strains demands the development of new, safe therapies. Consequentl...

Full description

Bibliographic Details
Main Authors: Muslimah N. Alsulami, Mohamed T. El-Saadony
Format: Article
Language:English
Published: Elsevier 2023-12-01
Series:Poultry Science
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0032579123006302
_version_ 1797401845343191040
author Muslimah N. Alsulami
Mohamed T. El-Saadony
author_facet Muslimah N. Alsulami
Mohamed T. El-Saadony
author_sort Muslimah N. Alsulami
collection DOAJ
description ABSTRACT: Nanomedicine is a critical therapeutic approach for treating most poultry illnesses, particularly parasitic infections. Coccidiosis is a severe protozoan infection affecting poultry; the emergence of drug-resistant Eimeria strains demands the development of new, safe therapies. Consequently, the objective of this work was to investigate the efficacy of the biosynthesized selenium nanoparticles (SeNPs) by Paenibacillus polymyxa (P. polymyxa) against Eimeria tenella (E. tenella) experimental infection in broiler chickens. The prepared SeNPs absorbed the UV at 270 nm were spherical with a size of 26 nm, and had a surface negative charge of −25 mV. One hundred and fifty, 1-day-old male broiler chicks were randomly allocated into 5 groups (30 birds/group with triplicates each) as follows: T1: negative control (noninfected and nontreated with SeNPs); T2: delivered SeNPs (500 µg/kg diet) for 35 successive days, T3: E. tenella-infected (positive control birds), T4: E. tenella-infected and treated with SeNPs (500 µg/kg diet) and T5: E. tenella-infected chicks and treated with anticoccidial agent (sulfadimidine, 16% solution 8 mL/L of drinking water) for 5 successive days. At 14 d of age, each bird in infected groups was orally treated with 3 × 103 sporulated oocyst of E. tenella. SeNPs considerably decreased the number of oocysts in broiler feces compared to positive control and anticoccidial drug, followed by a substantial reduction of parasite phase count in the cecum (15, 10, and 8 for meronts, gamonts, and developing oocysts) when compared with positive control birds. The Eimeria experimental infection lowered the activity of antioxidant enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx), and reduced glutathione (GSH) while increasing the stress parameters nitric oxide (NO) and malonaldehyde (MDA). Moreover, the production of proinflammatory (TNF-α and IL-6) and apoptotic genes (BcL2 and Cas-3) were significantly elevated. Administrating SeNPs to chicks significantly decreased oxidative stress, inflammation, and apoptotic markers in the cecum tissue. Therefore, growth performance, carcass weights, antioxidant enzymes, and blood properties of infected chicks were enhanced. The findings compared the protecting role of Se-nanoparticles against cecum damages in E. tenella-infected broilers.
first_indexed 2024-03-09T02:16:12Z
format Article
id doaj.art-cc452a859a254e7daced04df1d7c960d
institution Directory Open Access Journal
issn 0032-5791
language English
last_indexed 2024-03-09T02:16:12Z
publishDate 2023-12-01
publisher Elsevier
record_format Article
series Poultry Science
spelling doaj.art-cc452a859a254e7daced04df1d7c960d2023-12-07T05:27:14ZengElsevierPoultry Science0032-57912023-12-0110212103111Supplementing broiler diets with bacterial selenium nanoparticles enhancing performance, carcass traits, blood indices, antioxidant status, and caecal microbiota of Eimeria tenella-infected broiler chickensMuslimah N. Alsulami0Mohamed T. El-Saadony1Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; Corresponding author:Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, EgyptABSTRACT: Nanomedicine is a critical therapeutic approach for treating most poultry illnesses, particularly parasitic infections. Coccidiosis is a severe protozoan infection affecting poultry; the emergence of drug-resistant Eimeria strains demands the development of new, safe therapies. Consequently, the objective of this work was to investigate the efficacy of the biosynthesized selenium nanoparticles (SeNPs) by Paenibacillus polymyxa (P. polymyxa) against Eimeria tenella (E. tenella) experimental infection in broiler chickens. The prepared SeNPs absorbed the UV at 270 nm were spherical with a size of 26 nm, and had a surface negative charge of −25 mV. One hundred and fifty, 1-day-old male broiler chicks were randomly allocated into 5 groups (30 birds/group with triplicates each) as follows: T1: negative control (noninfected and nontreated with SeNPs); T2: delivered SeNPs (500 µg/kg diet) for 35 successive days, T3: E. tenella-infected (positive control birds), T4: E. tenella-infected and treated with SeNPs (500 µg/kg diet) and T5: E. tenella-infected chicks and treated with anticoccidial agent (sulfadimidine, 16% solution 8 mL/L of drinking water) for 5 successive days. At 14 d of age, each bird in infected groups was orally treated with 3 × 103 sporulated oocyst of E. tenella. SeNPs considerably decreased the number of oocysts in broiler feces compared to positive control and anticoccidial drug, followed by a substantial reduction of parasite phase count in the cecum (15, 10, and 8 for meronts, gamonts, and developing oocysts) when compared with positive control birds. The Eimeria experimental infection lowered the activity of antioxidant enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx), and reduced glutathione (GSH) while increasing the stress parameters nitric oxide (NO) and malonaldehyde (MDA). Moreover, the production of proinflammatory (TNF-α and IL-6) and apoptotic genes (BcL2 and Cas-3) were significantly elevated. Administrating SeNPs to chicks significantly decreased oxidative stress, inflammation, and apoptotic markers in the cecum tissue. Therefore, growth performance, carcass weights, antioxidant enzymes, and blood properties of infected chicks were enhanced. The findings compared the protecting role of Se-nanoparticles against cecum damages in E. tenella-infected broilers.http://www.sciencedirect.com/science/article/pii/S0032579123006302anticoccidialbacteriogenic selenium nanoparticlebroilerEimeriaimmunity
spellingShingle Muslimah N. Alsulami
Mohamed T. El-Saadony
Supplementing broiler diets with bacterial selenium nanoparticles enhancing performance, carcass traits, blood indices, antioxidant status, and caecal microbiota of Eimeria tenella-infected broiler chickens
Poultry Science
anticoccidial
bacteriogenic selenium nanoparticle
broiler
Eimeria
immunity
title Supplementing broiler diets with bacterial selenium nanoparticles enhancing performance, carcass traits, blood indices, antioxidant status, and caecal microbiota of Eimeria tenella-infected broiler chickens
title_full Supplementing broiler diets with bacterial selenium nanoparticles enhancing performance, carcass traits, blood indices, antioxidant status, and caecal microbiota of Eimeria tenella-infected broiler chickens
title_fullStr Supplementing broiler diets with bacterial selenium nanoparticles enhancing performance, carcass traits, blood indices, antioxidant status, and caecal microbiota of Eimeria tenella-infected broiler chickens
title_full_unstemmed Supplementing broiler diets with bacterial selenium nanoparticles enhancing performance, carcass traits, blood indices, antioxidant status, and caecal microbiota of Eimeria tenella-infected broiler chickens
title_short Supplementing broiler diets with bacterial selenium nanoparticles enhancing performance, carcass traits, blood indices, antioxidant status, and caecal microbiota of Eimeria tenella-infected broiler chickens
title_sort supplementing broiler diets with bacterial selenium nanoparticles enhancing performance carcass traits blood indices antioxidant status and caecal microbiota of eimeria tenella infected broiler chickens
topic anticoccidial
bacteriogenic selenium nanoparticle
broiler
Eimeria
immunity
url http://www.sciencedirect.com/science/article/pii/S0032579123006302
work_keys_str_mv AT muslimahnalsulami supplementingbroilerdietswithbacterialseleniumnanoparticlesenhancingperformancecarcasstraitsbloodindicesantioxidantstatusandcaecalmicrobiotaofeimeriatenellainfectedbroilerchickens
AT mohamedtelsaadony supplementingbroilerdietswithbacterialseleniumnanoparticlesenhancingperformancecarcasstraitsbloodindicesantioxidantstatusandcaecalmicrobiotaofeimeriatenellainfectedbroilerchickens