Summary: | In avian muscle development, embryonic muscle development determines the number of myofibers after birth. Therefore, in this study, we investigated the phenotypic differences and the molecular mechanism of pectoral muscle development of the European meat pigeon Mimas strain (later called European meat pigeon) and Shiqi pigeon on embryonic day 6 (E6), day 10 (E10), day 14 (E14) and day 1 after birth (P1). The results showed that the myofiber density of the Shiqi pigeon was significantly higher than that of the European meat pigeon on E6, and myofibers with a diameter in the range of 50~100 μm of the Shiqi pigeon on P1 were significantly higher than those of European meat pigeon. A total of 204 differential expressed genes (DEGs) were obtained from RNA-seq analysis in comparison between pigeon breeds at the same stage. DEGs related to muscle development were found to significantly enrich the cellular amino acid catabolism, carboxylic acid catabolism, extracellular matrix receptor interaction, REDOX enzyme activity, calcium signaling pathway, ECM receptor interaction, PPAR signaling pathway and other pathways. Using Cytoscape software to create mutual mapping, we identified 33 candidate genes. RT-qPCR was performed to verify the 8 DEGs selected—<i>DES</i>, <i>MYOD</i>, <i>MYF6</i>, <i>PTGS1</i>, <i>MYF5</i>, <i>MYH1, MSTN</i> and <i>PPARG</i>—and the results were consistent with RNA-seq. This study provides basic data for revealing the distinct embryonic development mechanism of pectoral muscle between European meat pigeons and Shiqi pigeons.
|