Summary: | The fractional Fisher equation has a wide range of applications in many engineering fields. The rapid numerical methods for fractional Fisher equation have momentous scientific meaning and engineering applied value. A parallelized computation method for inhomogeneous time-fractional Fisher equation (TFFE) is proposed. The main idea is to construct the hybrid alternating segment Crank-Nicolson (HASC-N) difference scheme based on alternating segment difference technology, using the classical explicit scheme and classical implicit scheme combined with Crank-Nicolson (C-N) scheme. The unique existence, unconditional stability and convergence are proved theoretically. Numerical tests show that the HASC-N difference scheme is unconditionally stable. The HASC-N difference scheme converges to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><msup><mi>τ</mi><mrow><mn>2</mn><mo>−</mo><mi>α</mi></mrow></msup><mo>+</mo><msup><mi>h</mi><mn>2</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula> under strong regularity and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><msup><mi>τ</mi><mi>α</mi></msup><mo>+</mo><msup><mi>h</mi><mn>2</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula> under weak regularity of fractional derivative discontinuity. The HASC-N difference scheme has high precision and distinct parallel computing characteristics, which is efficient for solving inhomogeneous TFFE.
|