A New Parallelized Computation Method of HASC-N Difference Scheme for Inhomogeneous Time Fractional Fisher Equation

The fractional Fisher equation has a wide range of applications in many engineering fields. The rapid numerical methods for fractional Fisher equation have momentous scientific meaning and engineering applied value. A parallelized computation method for inhomogeneous time-fractional Fisher equation...

Full description

Bibliographic Details
Main Authors: Ren Liu, Xiaozhong Yang, Peng Lyu
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/6/5/259
_version_ 1797499797168455680
author Ren Liu
Xiaozhong Yang
Peng Lyu
author_facet Ren Liu
Xiaozhong Yang
Peng Lyu
author_sort Ren Liu
collection DOAJ
description The fractional Fisher equation has a wide range of applications in many engineering fields. The rapid numerical methods for fractional Fisher equation have momentous scientific meaning and engineering applied value. A parallelized computation method for inhomogeneous time-fractional Fisher equation (TFFE) is proposed. The main idea is to construct the hybrid alternating segment Crank-Nicolson (HASC-N) difference scheme based on alternating segment difference technology, using the classical explicit scheme and classical implicit scheme combined with Crank-Nicolson (C-N) scheme. The unique existence, unconditional stability and convergence are proved theoretically. Numerical tests show that the HASC-N difference scheme is unconditionally stable. The HASC-N difference scheme converges to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><msup><mi>τ</mi><mrow><mn>2</mn><mo>−</mo><mi>α</mi></mrow></msup><mo>+</mo><msup><mi>h</mi><mn>2</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula> under strong regularity and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><msup><mi>τ</mi><mi>α</mi></msup><mo>+</mo><msup><mi>h</mi><mn>2</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula> under weak regularity of fractional derivative discontinuity. The HASC-N difference scheme has high precision and distinct parallel computing characteristics, which is efficient for solving inhomogeneous TFFE.
first_indexed 2024-03-10T03:52:35Z
format Article
id doaj.art-cc4ac22369ab4497a368eb10137b8128
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-10T03:52:35Z
publishDate 2022-05-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-cc4ac22369ab4497a368eb10137b81282023-11-23T11:03:39ZengMDPI AGFractal and Fractional2504-31102022-05-016525910.3390/fractalfract6050259A New Parallelized Computation Method of HASC-N Difference Scheme for Inhomogeneous Time Fractional Fisher EquationRen Liu0Xiaozhong Yang1Peng Lyu2Institute of Information and Computation, School of Mathematics and Physics, North China Electric Power University, Beijing 102206, ChinaInstitute of Information and Computation, School of Mathematics and Physics, North China Electric Power University, Beijing 102206, ChinaInstitute of Information and Computation, School of Mathematics and Physics, North China Electric Power University, Beijing 102206, ChinaThe fractional Fisher equation has a wide range of applications in many engineering fields. The rapid numerical methods for fractional Fisher equation have momentous scientific meaning and engineering applied value. A parallelized computation method for inhomogeneous time-fractional Fisher equation (TFFE) is proposed. The main idea is to construct the hybrid alternating segment Crank-Nicolson (HASC-N) difference scheme based on alternating segment difference technology, using the classical explicit scheme and classical implicit scheme combined with Crank-Nicolson (C-N) scheme. The unique existence, unconditional stability and convergence are proved theoretically. Numerical tests show that the HASC-N difference scheme is unconditionally stable. The HASC-N difference scheme converges to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><msup><mi>τ</mi><mrow><mn>2</mn><mo>−</mo><mi>α</mi></mrow></msup><mo>+</mo><msup><mi>h</mi><mn>2</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula> under strong regularity and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><msup><mi>τ</mi><mi>α</mi></msup><mo>+</mo><msup><mi>h</mi><mn>2</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula> under weak regularity of fractional derivative discontinuity. The HASC-N difference scheme has high precision and distinct parallel computing characteristics, which is efficient for solving inhomogeneous TFFE.https://www.mdpi.com/2504-3110/6/5/259inhomogeneous TFFEHASC-N difference schemeunconditional stabilityconvergence ordernumerical tests
spellingShingle Ren Liu
Xiaozhong Yang
Peng Lyu
A New Parallelized Computation Method of HASC-N Difference Scheme for Inhomogeneous Time Fractional Fisher Equation
Fractal and Fractional
inhomogeneous TFFE
HASC-N difference scheme
unconditional stability
convergence order
numerical tests
title A New Parallelized Computation Method of HASC-N Difference Scheme for Inhomogeneous Time Fractional Fisher Equation
title_full A New Parallelized Computation Method of HASC-N Difference Scheme for Inhomogeneous Time Fractional Fisher Equation
title_fullStr A New Parallelized Computation Method of HASC-N Difference Scheme for Inhomogeneous Time Fractional Fisher Equation
title_full_unstemmed A New Parallelized Computation Method of HASC-N Difference Scheme for Inhomogeneous Time Fractional Fisher Equation
title_short A New Parallelized Computation Method of HASC-N Difference Scheme for Inhomogeneous Time Fractional Fisher Equation
title_sort new parallelized computation method of hasc n difference scheme for inhomogeneous time fractional fisher equation
topic inhomogeneous TFFE
HASC-N difference scheme
unconditional stability
convergence order
numerical tests
url https://www.mdpi.com/2504-3110/6/5/259
work_keys_str_mv AT renliu anewparallelizedcomputationmethodofhascndifferenceschemeforinhomogeneoustimefractionalfisherequation
AT xiaozhongyang anewparallelizedcomputationmethodofhascndifferenceschemeforinhomogeneoustimefractionalfisherequation
AT penglyu anewparallelizedcomputationmethodofhascndifferenceschemeforinhomogeneoustimefractionalfisherequation
AT renliu newparallelizedcomputationmethodofhascndifferenceschemeforinhomogeneoustimefractionalfisherequation
AT xiaozhongyang newparallelizedcomputationmethodofhascndifferenceschemeforinhomogeneoustimefractionalfisherequation
AT penglyu newparallelizedcomputationmethodofhascndifferenceschemeforinhomogeneoustimefractionalfisherequation