Identification and classification of objects in images obtained by UAV and orbital base imaging equipmenttion

To identify and classify objects on images obtained using UAV imaging and orbital-based imaging, a neural network classification model based on the use of an autoencoder and built on the architecture of an ensemble of multilayer perceptrons is proposed. Additionally, at the stage of highlighting inf...

Full description

Bibliographic Details
Main Authors: A. A. Doudkin, V. V. Ganchenko, A. V. Inyutin, E. E. Marushko
Format: Article
Language:English
Published: Belarusian National Technical University 2023-02-01
Series:Sistemnyj Analiz i Prikladnaâ Informatika
Subjects:
Online Access:https://sapi.bntu.by/jour/article/view/591
_version_ 1797873745319165952
author A. A. Doudkin
V. V. Ganchenko
A. V. Inyutin
E. E. Marushko
author_facet A. A. Doudkin
V. V. Ganchenko
A. V. Inyutin
E. E. Marushko
author_sort A. A. Doudkin
collection DOAJ
description To identify and classify objects on images obtained using UAV imaging and orbital-based imaging, a neural network classification model based on the use of an autoencoder and built on the architecture of an ensemble of multilayer perceptrons is proposed. Additionally, at the stage of highlighting informative features, is added a color information, which is based on the per-channel histograms and is invariant to the scale and rotations of the image. The model is implemented using the Keras library. The use of the proposed model for classification into four classes: “Fire”, “Smoke”, “Vegetation” and “Buildings”, allows to achieve a classification accuracy above 99%.
first_indexed 2024-04-10T01:20:01Z
format Article
id doaj.art-cc58bac5418240b28ade47e81e4b1fae
institution Directory Open Access Journal
issn 2309-4923
2414-0481
language English
last_indexed 2024-04-10T01:20:01Z
publishDate 2023-02-01
publisher Belarusian National Technical University
record_format Article
series Sistemnyj Analiz i Prikladnaâ Informatika
spelling doaj.art-cc58bac5418240b28ade47e81e4b1fae2023-03-13T09:47:42ZengBelarusian National Technical UniversitySistemnyj Analiz i Prikladnaâ Informatika2309-49232414-04812023-02-0104303710.21122/2309-4923-2022-4-30-37440Identification and classification of objects in images obtained by UAV and orbital base imaging equipmenttionA. A. Doudkin0V. V. Ganchenko1A. V. Inyutin2E. E. Marushko3Объединенный институт проблем информатики НАН БеларусиОбъединенный институт проблем информатики НАН БеларусиОбъединенный институт проблем информатики НАН БеларусиОбъединенный институт проблем информатики НАН БеларусиTo identify and classify objects on images obtained using UAV imaging and orbital-based imaging, a neural network classification model based on the use of an autoencoder and built on the architecture of an ensemble of multilayer perceptrons is proposed. Additionally, at the stage of highlighting informative features, is added a color information, which is based on the per-channel histograms and is invariant to the scale and rotations of the image. The model is implemented using the Keras library. The use of the proposed model for classification into four classes: “Fire”, “Smoke”, “Vegetation” and “Buildings”, allows to achieve a classification accuracy above 99%.https://sapi.bntu.by/jour/article/view/591автоэнкодерансамбль многослойных персептроновклассификация
spellingShingle A. A. Doudkin
V. V. Ganchenko
A. V. Inyutin
E. E. Marushko
Identification and classification of objects in images obtained by UAV and orbital base imaging equipmenttion
Sistemnyj Analiz i Prikladnaâ Informatika
автоэнкодер
ансамбль многослойных персептронов
классификация
title Identification and classification of objects in images obtained by UAV and orbital base imaging equipmenttion
title_full Identification and classification of objects in images obtained by UAV and orbital base imaging equipmenttion
title_fullStr Identification and classification of objects in images obtained by UAV and orbital base imaging equipmenttion
title_full_unstemmed Identification and classification of objects in images obtained by UAV and orbital base imaging equipmenttion
title_short Identification and classification of objects in images obtained by UAV and orbital base imaging equipmenttion
title_sort identification and classification of objects in images obtained by uav and orbital base imaging equipmenttion
topic автоэнкодер
ансамбль многослойных персептронов
классификация
url https://sapi.bntu.by/jour/article/view/591
work_keys_str_mv AT aadoudkin identificationandclassificationofobjectsinimagesobtainedbyuavandorbitalbaseimagingequipmenttion
AT vvganchenko identificationandclassificationofobjectsinimagesobtainedbyuavandorbitalbaseimagingequipmenttion
AT avinyutin identificationandclassificationofobjectsinimagesobtainedbyuavandorbitalbaseimagingequipmenttion
AT eemarushko identificationandclassificationofobjectsinimagesobtainedbyuavandorbitalbaseimagingequipmenttion