Three positive solutions of $N$-dimensional $p$-Laplacian with indefinite weight

This paper is concerned with the global behavior of components of positive radial solutions for the quasilinear elliptic problem with indefinite weight \begin{equation*} \begin{aligned} &\text{div}(\varphi_p(\nabla u))+\lambda h(x)f(u)=0, & & \text{in}\ B,\\ &u=0, & & \text{...

Full description

Bibliographic Details
Main Authors: Tianlan Chen, Ruyun Ma
Format: Article
Language:English
Published: University of Szeged 2019-03-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7202
_version_ 1797830536940486656
author Tianlan Chen
Ruyun Ma
author_facet Tianlan Chen
Ruyun Ma
author_sort Tianlan Chen
collection DOAJ
description This paper is concerned with the global behavior of components of positive radial solutions for the quasilinear elliptic problem with indefinite weight \begin{equation*} \begin{aligned} &\text{div}(\varphi_p(\nabla u))+\lambda h(x)f(u)=0, & & \text{in}\ B,\\ &u=0, & & \text{on}\ \partial B, \end{aligned} \end{equation*} where $\varphi_p(s)=|s|^{p-2}s$, $B$ is the unit open ball of $\mathbb{R}^N$ with $N\geq1$, $1<p<\infty$, $\lambda>0$ is a parameter, $f\in C([0, \infty), [0, \infty))$ and $h\in C(\bar{B})$ is a sign-changing function. We manage to determine the intervals of $\lambda$ in which the above problem has one, two or three positive radial solutions by using the directions of a bifurcation.
first_indexed 2024-04-09T13:37:41Z
format Article
id doaj.art-cc65e95e5cbc4e2fb75e723adf7c7a70
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:37:41Z
publishDate 2019-03-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-cc65e95e5cbc4e2fb75e723adf7c7a702023-05-09T07:53:09ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752019-03-0120191911410.14232/ejqtde.2019.1.197202Three positive solutions of $N$-dimensional $p$-Laplacian with indefinite weightTianlan Chen0Ruyun Ma1Department of Mathematics, Northwest Normal University, Lanzhou, P.R. ChinaDepartment of Mathematics, Northwest Normal University, Lanzhou, P.R. ChinaThis paper is concerned with the global behavior of components of positive radial solutions for the quasilinear elliptic problem with indefinite weight \begin{equation*} \begin{aligned} &\text{div}(\varphi_p(\nabla u))+\lambda h(x)f(u)=0, & & \text{in}\ B,\\ &u=0, & & \text{on}\ \partial B, \end{aligned} \end{equation*} where $\varphi_p(s)=|s|^{p-2}s$, $B$ is the unit open ball of $\mathbb{R}^N$ with $N\geq1$, $1<p<\infty$, $\lambda>0$ is a parameter, $f\in C([0, \infty), [0, \infty))$ and $h\in C(\bar{B})$ is a sign-changing function. We manage to determine the intervals of $\lambda$ in which the above problem has one, two or three positive radial solutions by using the directions of a bifurcation.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7202positive solutions$p$-laplacianindefinite weightbifurcation
spellingShingle Tianlan Chen
Ruyun Ma
Three positive solutions of $N$-dimensional $p$-Laplacian with indefinite weight
Electronic Journal of Qualitative Theory of Differential Equations
positive solutions
$p$-laplacian
indefinite weight
bifurcation
title Three positive solutions of $N$-dimensional $p$-Laplacian with indefinite weight
title_full Three positive solutions of $N$-dimensional $p$-Laplacian with indefinite weight
title_fullStr Three positive solutions of $N$-dimensional $p$-Laplacian with indefinite weight
title_full_unstemmed Three positive solutions of $N$-dimensional $p$-Laplacian with indefinite weight
title_short Three positive solutions of $N$-dimensional $p$-Laplacian with indefinite weight
title_sort three positive solutions of n dimensional p laplacian with indefinite weight
topic positive solutions
$p$-laplacian
indefinite weight
bifurcation
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7202
work_keys_str_mv AT tianlanchen threepositivesolutionsofndimensionalplaplacianwithindefiniteweight
AT ruyunma threepositivesolutionsofndimensionalplaplacianwithindefiniteweight