TFInterpy: A high-performance spatial interpolation Python package

Interpolation algorithms are essential tools for spatial analysis. The Kriging method satisfies the best linear unbiased estimation and is widely used in scenarios where high accuracy is required. But the program running time may be unacceptably long when using the Kriging method for large dataset....

Full description

Bibliographic Details
Main Authors: Zhiwen Chen, Baorong Zhong
Format: Article
Language:English
Published: Elsevier 2022-12-01
Series:SoftwareX
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352711022001479
_version_ 1811187356513861632
author Zhiwen Chen
Baorong Zhong
author_facet Zhiwen Chen
Baorong Zhong
author_sort Zhiwen Chen
collection DOAJ
description Interpolation algorithms are essential tools for spatial analysis. The Kriging method satisfies the best linear unbiased estimation and is widely used in scenarios where high accuracy is required. But the program running time may be unacceptably long when using the Kriging method for large dataset. To solve the problem, we developed TFInterpy based on the TensorFlow framework. This Python package provides an open-source, cross-platform, easy-to-use API for interpolation algorithms and achieves significant speedups when applied to large-scale tasks.
first_indexed 2024-04-11T14:00:50Z
format Article
id doaj.art-cc6d74bac9dd4ec2a097620fe1e520a5
institution Directory Open Access Journal
issn 2352-7110
language English
last_indexed 2024-04-11T14:00:50Z
publishDate 2022-12-01
publisher Elsevier
record_format Article
series SoftwareX
spelling doaj.art-cc6d74bac9dd4ec2a097620fe1e520a52022-12-22T04:20:08ZengElsevierSoftwareX2352-71102022-12-0120101229TFInterpy: A high-performance spatial interpolation Python packageZhiwen Chen0Baorong Zhong1School of Computer Science, Yangtze University, Jingzhou, 434000, ChinaCorresponding author.; School of Computer Science, Yangtze University, Jingzhou, 434000, ChinaInterpolation algorithms are essential tools for spatial analysis. The Kriging method satisfies the best linear unbiased estimation and is widely used in scenarios where high accuracy is required. But the program running time may be unacceptably long when using the Kriging method for large dataset. To solve the problem, we developed TFInterpy based on the TensorFlow framework. This Python package provides an open-source, cross-platform, easy-to-use API for interpolation algorithms and achieves significant speedups when applied to large-scale tasks.http://www.sciencedirect.com/science/article/pii/S2352711022001479PythonTensorFlowInterpolationKriging
spellingShingle Zhiwen Chen
Baorong Zhong
TFInterpy: A high-performance spatial interpolation Python package
SoftwareX
Python
TensorFlow
Interpolation
Kriging
title TFInterpy: A high-performance spatial interpolation Python package
title_full TFInterpy: A high-performance spatial interpolation Python package
title_fullStr TFInterpy: A high-performance spatial interpolation Python package
title_full_unstemmed TFInterpy: A high-performance spatial interpolation Python package
title_short TFInterpy: A high-performance spatial interpolation Python package
title_sort tfinterpy a high performance spatial interpolation python package
topic Python
TensorFlow
Interpolation
Kriging
url http://www.sciencedirect.com/science/article/pii/S2352711022001479
work_keys_str_mv AT zhiwenchen tfinterpyahighperformancespatialinterpolationpythonpackage
AT baorongzhong tfinterpyahighperformancespatialinterpolationpythonpackage