Further properties of the rational recursive sequence x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}
In this paper we consider the difference equation \[x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}, \quad n=0,1,...\tag{E}\] with positive parameters \(a\) and \(c\), negative parameter \(b\) and nonnegative initial conditions. We investigate the asymptotic behavior of solutions of equation \(\text{(E)}\)...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
AGH Univeristy of Science and Technology Press
2006-01-01
|
Series: | Opuscula Mathematica |
Subjects: | |
Online Access: | http://www.opuscula.agh.edu.pl/vol26/3/art/opuscula_math_2628.pdf |
_version_ | 1811327206582910976 |
---|---|
author | Anna Andruch-Sobiło Małgorzata Migda |
author_facet | Anna Andruch-Sobiło Małgorzata Migda |
author_sort | Anna Andruch-Sobiło |
collection | DOAJ |
description | In this paper we consider the difference equation \[x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}, \quad n=0,1,...\tag{E}\] with positive parameters \(a\) and \(c\), negative parameter \(b\) and nonnegative initial conditions. We investigate the asymptotic behavior of solutions of equation \(\text{(E)}\). |
first_indexed | 2024-04-13T15:03:42Z |
format | Article |
id | doaj.art-cc6fa756722c41bbbe03df089b8f0ebf |
institution | Directory Open Access Journal |
issn | 1232-9274 |
language | English |
last_indexed | 2024-04-13T15:03:42Z |
publishDate | 2006-01-01 |
publisher | AGH Univeristy of Science and Technology Press |
record_format | Article |
series | Opuscula Mathematica |
spelling | doaj.art-cc6fa756722c41bbbe03df089b8f0ebf2022-12-22T02:42:14ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742006-01-012633873942628Further properties of the rational recursive sequence x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}Anna Andruch-Sobiło0Małgorzata Migda1Poznań University of Technology, Institute of Mathematics, Piotrowo 3A, 60-965 Poznań, PolandPoznań University of Technology, Institute of Mathematics, Piotrowo 3A, 60-965 Poznań, PolandIn this paper we consider the difference equation \[x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}, \quad n=0,1,...\tag{E}\] with positive parameters \(a\) and \(c\), negative parameter \(b\) and nonnegative initial conditions. We investigate the asymptotic behavior of solutions of equation \(\text{(E)}\).http://www.opuscula.agh.edu.pl/vol26/3/art/opuscula_math_2628.pdfdifference equationexplicit formulapositive solutionsasymptotic stability |
spellingShingle | Anna Andruch-Sobiło Małgorzata Migda Further properties of the rational recursive sequence x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}} Opuscula Mathematica difference equation explicit formula positive solutions asymptotic stability |
title | Further properties of the rational recursive sequence x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}} |
title_full | Further properties of the rational recursive sequence x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}} |
title_fullStr | Further properties of the rational recursive sequence x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}} |
title_full_unstemmed | Further properties of the rational recursive sequence x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}} |
title_short | Further properties of the rational recursive sequence x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}} |
title_sort | further properties of the rational recursive sequence x n 1 frac ax n 1 b cx n x n 1 |
topic | difference equation explicit formula positive solutions asymptotic stability |
url | http://www.opuscula.agh.edu.pl/vol26/3/art/opuscula_math_2628.pdf |
work_keys_str_mv | AT annaandruchsobiło furtherpropertiesoftherationalrecursivesequencexn1fracaxn1bcxnxn1 AT małgorzatamigda furtherpropertiesoftherationalrecursivesequencexn1fracaxn1bcxnxn1 |