Further properties of the rational recursive sequence x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}

In this paper we consider the difference equation \[x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}, \quad n=0,1,...\tag{E}\] with positive parameters \(a\) and \(c\), negative parameter \(b\) and nonnegative initial conditions. We investigate the asymptotic behavior of solutions of equation \(\text{(E)}\)...

Full description

Bibliographic Details
Main Authors: Anna Andruch-Sobiło, Małgorzata Migda
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2006-01-01
Series:Opuscula Mathematica
Subjects:
Online Access:http://www.opuscula.agh.edu.pl/vol26/3/art/opuscula_math_2628.pdf
_version_ 1811327206582910976
author Anna Andruch-Sobiło
Małgorzata Migda
author_facet Anna Andruch-Sobiło
Małgorzata Migda
author_sort Anna Andruch-Sobiło
collection DOAJ
description In this paper we consider the difference equation \[x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}, \quad n=0,1,...\tag{E}\] with positive parameters \(a\) and \(c\), negative parameter \(b\) and nonnegative initial conditions. We investigate the asymptotic behavior of solutions of equation \(\text{(E)}\).
first_indexed 2024-04-13T15:03:42Z
format Article
id doaj.art-cc6fa756722c41bbbe03df089b8f0ebf
institution Directory Open Access Journal
issn 1232-9274
language English
last_indexed 2024-04-13T15:03:42Z
publishDate 2006-01-01
publisher AGH Univeristy of Science and Technology Press
record_format Article
series Opuscula Mathematica
spelling doaj.art-cc6fa756722c41bbbe03df089b8f0ebf2022-12-22T02:42:14ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742006-01-012633873942628Further properties of the rational recursive sequence x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}Anna Andruch-Sobiło0Małgorzata Migda1Poznań University of Technology, Institute of Mathematics, Piotrowo 3A, 60-965 Poznań, PolandPoznań University of Technology, Institute of Mathematics, Piotrowo 3A, 60-965 Poznań, PolandIn this paper we consider the difference equation \[x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}, \quad n=0,1,...\tag{E}\] with positive parameters \(a\) and \(c\), negative parameter \(b\) and nonnegative initial conditions. We investigate the asymptotic behavior of solutions of equation \(\text{(E)}\).http://www.opuscula.agh.edu.pl/vol26/3/art/opuscula_math_2628.pdfdifference equationexplicit formulapositive solutionsasymptotic stability
spellingShingle Anna Andruch-Sobiło
Małgorzata Migda
Further properties of the rational recursive sequence x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}
Opuscula Mathematica
difference equation
explicit formula
positive solutions
asymptotic stability
title Further properties of the rational recursive sequence x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}
title_full Further properties of the rational recursive sequence x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}
title_fullStr Further properties of the rational recursive sequence x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}
title_full_unstemmed Further properties of the rational recursive sequence x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}
title_short Further properties of the rational recursive sequence x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}
title_sort further properties of the rational recursive sequence x n 1 frac ax n 1 b cx n x n 1
topic difference equation
explicit formula
positive solutions
asymptotic stability
url http://www.opuscula.agh.edu.pl/vol26/3/art/opuscula_math_2628.pdf
work_keys_str_mv AT annaandruchsobiło furtherpropertiesoftherationalrecursivesequencexn1fracaxn1bcxnxn1
AT małgorzatamigda furtherpropertiesoftherationalrecursivesequencexn1fracaxn1bcxnxn1