Further properties of the rational recursive sequence x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}
In this paper we consider the difference equation \[x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}, \quad n=0,1,...\tag{E}\] with positive parameters \(a\) and \(c\), negative parameter \(b\) and nonnegative initial conditions. We investigate the asymptotic behavior of solutions of equation \(\text{(E)}\)...
Main Authors: | Anna Andruch-Sobiło, Małgorzata Migda |
---|---|
Format: | Article |
Language: | English |
Published: |
AGH Univeristy of Science and Technology Press
2006-01-01
|
Series: | Opuscula Mathematica |
Subjects: | |
Online Access: | http://www.opuscula.agh.edu.pl/vol26/3/art/opuscula_math_2628.pdf |
Similar Items
-
Global behavior of the difference equation $x_{n+1}=\frac{Ax_{n-1}} {B-Cx_{n}x_{n-2}}$
by: R. Abo-Zeid, et al.
Published: (2013-11-01) -
Global behavior of the difference equation $x_{n+1}=frac{Ax_{n-1}} {B-Cx_{n}x_{n-2}}$
by: R. Abo-Zeid, et al.
Published: (2013-02-01) -
On a conjecture for the difference equation $ x_{n+1} = 1+p\frac{x_{n-m}}{x_n^2} $
by: George L. Karakostas
Published: (2023-07-01) -
On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$
by: Burak Oğul, et al.
Published: (2021-03-01) -
On the Global of the Difference Equation ${x_{n+1}}=\frac{{\alpha {x_{n-m}+\eta {x_{n-k}}+}}\delta {{x_{n}}}}{{\beta +\gamma {x_{n-k}}{x_{n-l}}\left( {{x_{n-k}}+{x_{n-l}}}\right) }}$
by: Mohamed Abd El-moneam
Published: (2022-12-01)