Mechanical properties of copper nanocomposites reinforced with uncoated and nickel coated carbon nanotubes

Carbon nanotubes have emerged as potential reinforcement material for metallic matrices since their discovery in 1991 by Japanese scientist Sumo Iijima. It is observed that carbon nanotubes were comprised of multifunctional properties and were ideal reinforcement material for metallic matrices. In t...

Full description

Bibliographic Details
Main Authors: Vishwanath Koti, Raji George, Shakiba Ali, Murthy Shivananda K.V.
Format: Article
Language:English
Published: University of Belgrade - Faculty of Mechanical Engineering, Belgrade 2018-01-01
Series:FME Transactions
Subjects:
Online Access:https://scindeks-clanci.ceon.rs/data/pdf/1451-2092/2018/1451-20921804623V.pdf
Description
Summary:Carbon nanotubes have emerged as potential reinforcement material for metallic matrices since their discovery in 1991 by Japanese scientist Sumo Iijima. It is observed that carbon nanotubes were comprised of multifunctional properties and were ideal reinforcement material for metallic matrices. In the present work we report the development of carbon nanotubes with multi-walls reinforced commercial purity copper nanocomposites. The carbon nanotubes content was varied from 0.25 to 1.0 wt% in the copper matrix nanocomposites. Here, carbon nanotubes were also nickel coated for improving the interfacial bonding with the copper matrix. In order to obtain the good dispersion of carbon nanotubes in the copper matrix, both materials were subjected to ultrasonication and blending process using ball milling. Further sintered nanocomposites were subjected to upsetting forging process, which involves densification and shape change simultaneously. Microstructure studies were conducted using scanning and transmission electron microscopes to study the dispersion of carbon nanotubes. The effect of carbon nanotubes on the mechanical properties like microhardness and tensile strength of copper matrix nanocomposites is studied in detail.
ISSN:1451-2092
2406-128X