Sub-MIC streptomycin and tetracycline enhanced Staphylococcus aureus Guangzhou-SAU749 biofilm formation, an in-depth study on transcriptomics

Staphylococcus aureus is a major human pathogen, a potential “Super-bug” and a typical biofilm forming bacteria. With usage of large amount of antibiotics, the residual antibiotics in clinical settings further complicate the colonization, pathogenesis and resistance of S. aureus. This study aimed at...

Full description

Bibliographic Details
Main Authors: Junyan Liu, Tengyi Huang, Zhenbo Xu, Yuzhu Mao, Thanapop Soteyome, Gongliang Liu, Chunyun Qu, Lei Yuan, Qin Ma, Fang Zhou, Gamini Seneviratne
Format: Article
Language:English
Published: Elsevier 2023-12-01
Series:Biofilm
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590207523000539
Description
Summary:Staphylococcus aureus is a major human pathogen, a potential “Super-bug” and a typical biofilm forming bacteria. With usage of large amount of antibiotics, the residual antibiotics in clinical settings further complicate the colonization, pathogenesis and resistance of S. aureus. This study aimed at investigating the phenotypical and global gene expression changes on biofilm formation of a clinical S. aureus isolate treated under different types of antibiotics. Firstly, an isolate Guangzhou-SAU749 was selected from a large sale of previously identified S. aureus isolates, which exhibited weak biofilm formation in terms of biomass and viability. Secondly, 9 commonly prescribed antibiotics for S. aureus infections treatment, together with 10 concentrations ranging from 1/128 to 4 minimum inhibitory concentration (MIC) with 2-fold serial dilution, were used as different antibiotic stress conditions. Then, biofilm formation of S. aureus Guangzhou-SAU749 at different stages including 8 h, 16 h, 24 h, and 48 h, was tested by crystal violet and MTS assays. Thirdly, the whole genome of S. aureus Guangzhou-SAU749 was investigated by genome sequencing on PacBio platform. Fourthly, since enhancement of biofilm formation occurred when treated with 1/2 MIC tetracycline (TCY) and 1/4 MIC streptomycin (STR) since 5 h, the relevant biofilm samples were selected and subjected to RNA-seq and bioinformatics analysis. Last, expression of two component system (TCS) and biofilm associated genes in 4 h, 8 h, 16 h, 24 h, and 48 h sub-MIC TCY and STR treated biofilm samples were performed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Although most antibiotics lowered the biomass and cell viability of Guangzhou-SAU749 biofilm at concentrations higher than MIC, certain antibiotics including TCY and STR promoted biofilm formation at sub-MICs. Additionally, upon genome sequencing, RNA-seq and RT-qPCR on biofilm samples treated with sub-MIC of TCY and STR at key time points, genes lytR, arlR, hssR, tagA, clfB, atlA and cidA related to TCS and biofilm formation were identified to contribute to the enhanced biofilm formation, providing a theoretical basis for further controlling on S. aureus biofilm formation.
ISSN:2590-2075