Three-zone simulated moving bed for the separation of chlorogenic acid and caffeine fractions in the liquid extract of spent coffee grounds

Spent Coffee Grounds (SCG) is an agricultural residue obtained in a large quantity from local cafes in Thailand. In order to handle this waste effectively, the valorization of SCG is essential. SCG consists of beneficial phenolic compounds with antioxidative properties and caffeine, which can be rec...

Full description

Bibliographic Details
Main Authors: Preuk Tangpromphan, Supaphorn Palitsakun, Attasak Jaree
Format: Article
Language:English
Published: Elsevier 2023-11-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844023085481
_version_ 1797429937289822208
author Preuk Tangpromphan
Supaphorn Palitsakun
Attasak Jaree
author_facet Preuk Tangpromphan
Supaphorn Palitsakun
Attasak Jaree
author_sort Preuk Tangpromphan
collection DOAJ
description Spent Coffee Grounds (SCG) is an agricultural residue obtained in a large quantity from local cafes in Thailand. In order to handle this waste effectively, the valorization of SCG is essential. SCG consists of beneficial phenolic compounds with antioxidative properties and caffeine, which can be recovered through extraction followed by separation and purification processes. In this work, water extraction of SCG was carried out. The volumetric composition of the liquid extract of SCG was then adjusted with an organic solvent, and the obtained mixture was used as the feed for subsequent separation. For the separation method of the SCG extract, a single chromatographic column was employed to separate a group of phenolic compounds (represented by chlorogenic acid) and a group of contaminants (represented by caffeine). The volumetric composition of the mobile phase was varied to determine the condition suitable for the separation of chlorogenic acid and caffeine in a C18 column. Adsorption parameters were determined and used to formulate the mathematical models describing the adsorption dynamics of those two bioactive compounds in the experimental breakthrough curves of standard solutions and the liquid extract of SCG. Furthermore, the three-zone simulated moving bed system (TZ-SMB) was designed to continuously separate fractions of chlorogenic acid and caffeine in the liquid extract of SCG. The adsorption parameters were employed in the optimization of TZ-SMB operating conditions using triangle theory, conducted via computer simulation. The experimental result of water extraction revealed that the yields of chlorogenic acid and caffeine were 0.292 and 0.583 mg/g dried SCG, respectively, using solid-to-liquid ratio of 1 g: 30 mL and temperature of 75 °C. The separation result in a single chromatographic column showed that the mobile phase consisting of acetonitrile, water, and formic acid (10: 90: 1.5 vol%) provided the linear adsorption isotherms for both chlorogenic acid and caffeine, and the chromatographic peaks of all compounds in the liquid extract of SCG were well separated. The simulated results of TZ-SMB at the optimal point revealed that the flow rates of desorbent, feed, extract product, and raffinate product were 0.626, 0.115, 0.081, and 0.593 mL/min, respectively, with the switching time of 20 min. At this point, the relative purities of caffeine in the extract product and chlorogenic acid in the raffinate product were 99.45 % and 98.88 %, respectively, with the maximum productivity of 0.045 mg/mL⋅h. In addition, for demonstration purposes, the lab-scale TZ-SMB experiment was conducted to show the separation of chlorogenic acid and caffeine in the liquid extract of SCG. The operating point from the triangle separation region was chosen based on the sensitivity of flow rate that ensured the criteria of purity. The experimental results showed that the relative purities of caffeine in extract product and chlorogenic acid in raffinate product were both 100 %, verifying the successful separation.
first_indexed 2024-03-09T09:20:07Z
format Article
id doaj.art-cc7bbb9d76b74a6bbca6ebfbaa992fc3
institution Directory Open Access Journal
issn 2405-8440
language English
last_indexed 2024-03-09T09:20:07Z
publishDate 2023-11-01
publisher Elsevier
record_format Article
series Heliyon
spelling doaj.art-cc7bbb9d76b74a6bbca6ebfbaa992fc32023-12-02T07:01:55ZengElsevierHeliyon2405-84402023-11-01911e21340Three-zone simulated moving bed for the separation of chlorogenic acid and caffeine fractions in the liquid extract of spent coffee groundsPreuk Tangpromphan0Supaphorn Palitsakun1Attasak Jaree2Department of Biotechnology, Faculty of Agro-industry, Kasetsart University, Bangkok 10900, Thailand; Center for High-Value Products from Bioresources: HVPB. Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, ThailandCentral of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, ThailandCentral of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand; Center for High-Value Products from Bioresources: HVPB. Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand; Corresponding author. Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand.Spent Coffee Grounds (SCG) is an agricultural residue obtained in a large quantity from local cafes in Thailand. In order to handle this waste effectively, the valorization of SCG is essential. SCG consists of beneficial phenolic compounds with antioxidative properties and caffeine, which can be recovered through extraction followed by separation and purification processes. In this work, water extraction of SCG was carried out. The volumetric composition of the liquid extract of SCG was then adjusted with an organic solvent, and the obtained mixture was used as the feed for subsequent separation. For the separation method of the SCG extract, a single chromatographic column was employed to separate a group of phenolic compounds (represented by chlorogenic acid) and a group of contaminants (represented by caffeine). The volumetric composition of the mobile phase was varied to determine the condition suitable for the separation of chlorogenic acid and caffeine in a C18 column. Adsorption parameters were determined and used to formulate the mathematical models describing the adsorption dynamics of those two bioactive compounds in the experimental breakthrough curves of standard solutions and the liquid extract of SCG. Furthermore, the three-zone simulated moving bed system (TZ-SMB) was designed to continuously separate fractions of chlorogenic acid and caffeine in the liquid extract of SCG. The adsorption parameters were employed in the optimization of TZ-SMB operating conditions using triangle theory, conducted via computer simulation. The experimental result of water extraction revealed that the yields of chlorogenic acid and caffeine were 0.292 and 0.583 mg/g dried SCG, respectively, using solid-to-liquid ratio of 1 g: 30 mL and temperature of 75 °C. The separation result in a single chromatographic column showed that the mobile phase consisting of acetonitrile, water, and formic acid (10: 90: 1.5 vol%) provided the linear adsorption isotherms for both chlorogenic acid and caffeine, and the chromatographic peaks of all compounds in the liquid extract of SCG were well separated. The simulated results of TZ-SMB at the optimal point revealed that the flow rates of desorbent, feed, extract product, and raffinate product were 0.626, 0.115, 0.081, and 0.593 mL/min, respectively, with the switching time of 20 min. At this point, the relative purities of caffeine in the extract product and chlorogenic acid in the raffinate product were 99.45 % and 98.88 %, respectively, with the maximum productivity of 0.045 mg/mL⋅h. In addition, for demonstration purposes, the lab-scale TZ-SMB experiment was conducted to show the separation of chlorogenic acid and caffeine in the liquid extract of SCG. The operating point from the triangle separation region was chosen based on the sensitivity of flow rate that ensured the criteria of purity. The experimental results showed that the relative purities of caffeine in extract product and chlorogenic acid in raffinate product were both 100 %, verifying the successful separation.http://www.sciencedirect.com/science/article/pii/S2405844023085481Spent coffee groundsChlorogenic acidCaffeineExtractionSimulated moving bed
spellingShingle Preuk Tangpromphan
Supaphorn Palitsakun
Attasak Jaree
Three-zone simulated moving bed for the separation of chlorogenic acid and caffeine fractions in the liquid extract of spent coffee grounds
Heliyon
Spent coffee grounds
Chlorogenic acid
Caffeine
Extraction
Simulated moving bed
title Three-zone simulated moving bed for the separation of chlorogenic acid and caffeine fractions in the liquid extract of spent coffee grounds
title_full Three-zone simulated moving bed for the separation of chlorogenic acid and caffeine fractions in the liquid extract of spent coffee grounds
title_fullStr Three-zone simulated moving bed for the separation of chlorogenic acid and caffeine fractions in the liquid extract of spent coffee grounds
title_full_unstemmed Three-zone simulated moving bed for the separation of chlorogenic acid and caffeine fractions in the liquid extract of spent coffee grounds
title_short Three-zone simulated moving bed for the separation of chlorogenic acid and caffeine fractions in the liquid extract of spent coffee grounds
title_sort three zone simulated moving bed for the separation of chlorogenic acid and caffeine fractions in the liquid extract of spent coffee grounds
topic Spent coffee grounds
Chlorogenic acid
Caffeine
Extraction
Simulated moving bed
url http://www.sciencedirect.com/science/article/pii/S2405844023085481
work_keys_str_mv AT preuktangpromphan threezonesimulatedmovingbedfortheseparationofchlorogenicacidandcaffeinefractionsintheliquidextractofspentcoffeegrounds
AT supaphornpalitsakun threezonesimulatedmovingbedfortheseparationofchlorogenicacidandcaffeinefractionsintheliquidextractofspentcoffeegrounds
AT attasakjaree threezonesimulatedmovingbedfortheseparationofchlorogenicacidandcaffeinefractionsintheliquidextractofspentcoffeegrounds