Reduced Calibration Strategy Using a Basketball for RGB-D Cameras

RGB-D cameras produce depth and color information commonly used in the 3D reconstruction and vision computer areas. Different cameras with the same model usually produce images with different calibration errors. The color and depth layer usually requires calibration to minimize alignment errors, adj...

Full description

Bibliographic Details
Main Authors: Luis-Rogelio Roman-Rivera, Israel Sotelo-Rodríguez, Jesus Carlos Pedraza-Ortega, Marco Antonio Aceves-Fernandez, Juan Manuel Ramos-Arreguín, Efrén Gorrostieta-Hurtado
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/12/2085
_version_ 1797484703468486656
author Luis-Rogelio Roman-Rivera
Israel Sotelo-Rodríguez
Jesus Carlos Pedraza-Ortega
Marco Antonio Aceves-Fernandez
Juan Manuel Ramos-Arreguín
Efrén Gorrostieta-Hurtado
author_facet Luis-Rogelio Roman-Rivera
Israel Sotelo-Rodríguez
Jesus Carlos Pedraza-Ortega
Marco Antonio Aceves-Fernandez
Juan Manuel Ramos-Arreguín
Efrén Gorrostieta-Hurtado
author_sort Luis-Rogelio Roman-Rivera
collection DOAJ
description RGB-D cameras produce depth and color information commonly used in the 3D reconstruction and vision computer areas. Different cameras with the same model usually produce images with different calibration errors. The color and depth layer usually requires calibration to minimize alignment errors, adjust precision, and improve data quality in general. Standard calibration protocols for RGB-D cameras require a controlled environment to allow operators to take many RGB and depth pair images as an input for calibration frameworks making the calibration protocol challenging to implement without ideal conditions and the operator experience. In this work, we proposed a novel strategy that simplifies the calibration protocol by requiring fewer images than other methods. Our strategy uses an ordinary object, a know-size basketball, as a ground truth sphere geometry during the calibration. Our experiments show comparable results requiring fewer images and non-ideal scene conditions than a reference method to align color and depth image layers.
first_indexed 2024-03-09T23:08:14Z
format Article
id doaj.art-cc800563f6cf4ee68ddd76711a82877e
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T23:08:14Z
publishDate 2022-06-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-cc800563f6cf4ee68ddd76711a82877e2023-11-23T17:49:29ZengMDPI AGMathematics2227-73902022-06-011012208510.3390/math10122085Reduced Calibration Strategy Using a Basketball for RGB-D CamerasLuis-Rogelio Roman-Rivera0Israel Sotelo-Rodríguez1Jesus Carlos Pedraza-Ortega2Marco Antonio Aceves-Fernandez3Juan Manuel Ramos-Arreguín4Efrén Gorrostieta-Hurtado5Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro C.P. 76010, MexicoFacultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro C.P. 76010, MexicoFacultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro C.P. 76010, MexicoFacultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro C.P. 76010, MexicoFacultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro C.P. 76010, MexicoFacultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro C.P. 76010, MexicoRGB-D cameras produce depth and color information commonly used in the 3D reconstruction and vision computer areas. Different cameras with the same model usually produce images with different calibration errors. The color and depth layer usually requires calibration to minimize alignment errors, adjust precision, and improve data quality in general. Standard calibration protocols for RGB-D cameras require a controlled environment to allow operators to take many RGB and depth pair images as an input for calibration frameworks making the calibration protocol challenging to implement without ideal conditions and the operator experience. In this work, we proposed a novel strategy that simplifies the calibration protocol by requiring fewer images than other methods. Our strategy uses an ordinary object, a know-size basketball, as a ground truth sphere geometry during the calibration. Our experiments show comparable results requiring fewer images and non-ideal scene conditions than a reference method to align color and depth image layers.https://www.mdpi.com/2227-7390/10/12/2085RGB-D cameraRGB-D camera calibrationspherical object3D reconstructionsphere detection
spellingShingle Luis-Rogelio Roman-Rivera
Israel Sotelo-Rodríguez
Jesus Carlos Pedraza-Ortega
Marco Antonio Aceves-Fernandez
Juan Manuel Ramos-Arreguín
Efrén Gorrostieta-Hurtado
Reduced Calibration Strategy Using a Basketball for RGB-D Cameras
Mathematics
RGB-D camera
RGB-D camera calibration
spherical object
3D reconstruction
sphere detection
title Reduced Calibration Strategy Using a Basketball for RGB-D Cameras
title_full Reduced Calibration Strategy Using a Basketball for RGB-D Cameras
title_fullStr Reduced Calibration Strategy Using a Basketball for RGB-D Cameras
title_full_unstemmed Reduced Calibration Strategy Using a Basketball for RGB-D Cameras
title_short Reduced Calibration Strategy Using a Basketball for RGB-D Cameras
title_sort reduced calibration strategy using a basketball for rgb d cameras
topic RGB-D camera
RGB-D camera calibration
spherical object
3D reconstruction
sphere detection
url https://www.mdpi.com/2227-7390/10/12/2085
work_keys_str_mv AT luisrogelioromanrivera reducedcalibrationstrategyusingabasketballforrgbdcameras
AT israelsotelorodriguez reducedcalibrationstrategyusingabasketballforrgbdcameras
AT jesuscarlospedrazaortega reducedcalibrationstrategyusingabasketballforrgbdcameras
AT marcoantonioacevesfernandez reducedcalibrationstrategyusingabasketballforrgbdcameras
AT juanmanuelramosarreguin reducedcalibrationstrategyusingabasketballforrgbdcameras
AT efrengorrostietahurtado reducedcalibrationstrategyusingabasketballforrgbdcameras