Mather <i>β</i>-Function for Ellipses and Rigidity

The goal of the first part of this note is to get an explicit formula for rotation number and Mather <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-for...

Full description

Bibliographic Details
Main Author: Michael Bialy
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/24/11/1600
_version_ 1827646676135837696
author Michael Bialy
author_facet Michael Bialy
author_sort Michael Bialy
collection DOAJ
description The goal of the first part of this note is to get an explicit formula for rotation number and Mather <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-function for ellipse. This is done here with the help of non-standard generating function of billiard problem. In this way the derivation is especially simple. In the second part we discuss application of Mather <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-function to rigidity problem.
first_indexed 2024-03-09T19:05:50Z
format Article
id doaj.art-cc82e2012c344a9e865f9ed5fbdefc67
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-09T19:05:50Z
publishDate 2022-11-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-cc82e2012c344a9e865f9ed5fbdefc672023-11-24T04:36:53ZengMDPI AGEntropy1099-43002022-11-012411160010.3390/e24111600Mather <i>β</i>-Function for Ellipses and RigidityMichael Bialy0School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 6997801, IsraelThe goal of the first part of this note is to get an explicit formula for rotation number and Mather <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-function for ellipse. This is done here with the help of non-standard generating function of billiard problem. In this way the derivation is especially simple. In the second part we discuss application of Mather <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-function to rigidity problem.https://www.mdpi.com/1099-4300/24/11/1600Birkhoff billiardinvariant curveaction minimizers: rigidity, integrable billiards
spellingShingle Michael Bialy
Mather <i>β</i>-Function for Ellipses and Rigidity
Entropy
Birkhoff billiard
invariant curve
action minimizers: rigidity, integrable billiards
title Mather <i>β</i>-Function for Ellipses and Rigidity
title_full Mather <i>β</i>-Function for Ellipses and Rigidity
title_fullStr Mather <i>β</i>-Function for Ellipses and Rigidity
title_full_unstemmed Mather <i>β</i>-Function for Ellipses and Rigidity
title_short Mather <i>β</i>-Function for Ellipses and Rigidity
title_sort mather i β i function for ellipses and rigidity
topic Birkhoff billiard
invariant curve
action minimizers: rigidity, integrable billiards
url https://www.mdpi.com/1099-4300/24/11/1600
work_keys_str_mv AT michaelbialy matheribifunctionforellipsesandrigidity