Penerapan Metode Clustering dengan Algoritma K-Means pada Pengelompokkan Data Calon Mahasiswa Baru di Universitas Muhammadiyah Yogyakarta (Studi Kasus: Fakultas Kedokteran dan Ilmu Kesehatan, dan Fakultas Ilmu Sosial dan Ilmu Politik)

The increasing new prospective students in a University to make the stack more and more data, departing from it then conducted a search for new knowledge with data mining. Grouping data for prospective new students will be made by the method Clustering and used the algorithm k-means. In this penmaru...

Full description

Bibliographic Details
Main Authors: Asroni Asroni, Hidayatul Fitri, Eko Prasetyo
Format: Article
Language:English
Published: Universitas Muhammadiyah Yogyakarta 2018-05-01
Series:Semesta Teknika
Subjects:
Online Access:https://journal.umy.ac.id/index.php/st/article/view/2610
Description
Summary:The increasing new prospective students in a University to make the stack more and more data, departing from it then conducted a search for new knowledge with data mining. Grouping data for prospective new students will be made by the method Clustering and used the algorithm k-means. In this penmaru there are 5 data attributes are used i.e., hometown, gender, status to qualify for selection, driveways, and majors. This analysis is performed using WEKA software and the source data taken from admissions data (penmaru) in the form of a data warehouse. Class from the use of this method is the attribute of the majors. Iteration performed as many as 3 times and the number of a cluster at the Faculty of medicine and health sciences, i.e. 4 clusters, Faculty of social and political science 3 clusters. Method Clustering can be applied to the classification of data for prospective new students. Another thing that can be analyzed from the results of the grouping candidate data, promotion strategies from each Department to increase the quantity and quality.
ISSN:1411-061X
2502-5481