An improved particle swarm algorithm based on dynamic segmentation and neighborhood reverse learning(基于动态分级和邻域反向学习的改进粒子群算法)

针对粒子群算法容易陷入局部最优解的问题,提出了一种基于动态分级和邻域反向学习的改进粒子群算法.该算法通过构建动态分级机制,将种群中的粒子动态地划分成3个等级,对不同等级内的粒子采取不同的扰动行为,使得粒子在增强种群多样性的同时保持向全局最优方向进化;采用粒子智能更新方式,提高了粒子的搜索能力;引入动态邻域反向学习点建立全局搜索策略,促使种群快速寻优.最后,利用多种典型测试函数对该算法进行仿真实验,结果表明,与其他几种优化算法相比,本算法具有较好的收敛性和稳定性....

Full description

Bibliographic Details
Main Author: RENYanzhi(任燕芝)
Format: Article
Language:zho
Published: Zhejiang University Press 2018-05-01
Series:Zhejiang Daxue xuebao. Lixue ban
Subjects:
Online Access:https://doi.org/10.3785/j.issn.1008-9497.2018.03.001
_version_ 1797235730084265984
author RENYanzhi(任燕芝)
author_facet RENYanzhi(任燕芝)
author_sort RENYanzhi(任燕芝)
collection DOAJ
description 针对粒子群算法容易陷入局部最优解的问题,提出了一种基于动态分级和邻域反向学习的改进粒子群算法.该算法通过构建动态分级机制,将种群中的粒子动态地划分成3个等级,对不同等级内的粒子采取不同的扰动行为,使得粒子在增强种群多样性的同时保持向全局最优方向进化;采用粒子智能更新方式,提高了粒子的搜索能力;引入动态邻域反向学习点建立全局搜索策略,促使种群快速寻优.最后,利用多种典型测试函数对该算法进行仿真实验,结果表明,与其他几种优化算法相比,本算法具有较好的收敛性和稳定性.
first_indexed 2024-04-24T16:52:36Z
format Article
id doaj.art-cca143bb8100447b8bf3a216f691c802
institution Directory Open Access Journal
issn 1008-9497
language zho
last_indexed 2024-04-24T16:52:36Z
publishDate 2018-05-01
publisher Zhejiang University Press
record_format Article
series Zhejiang Daxue xuebao. Lixue ban
spelling doaj.art-cca143bb8100447b8bf3a216f691c8022024-03-29T01:58:38ZzhoZhejiang University PressZhejiang Daxue xuebao. Lixue ban1008-94972018-05-0145326127110.3785/j.issn.1008-9497.2018.03.001An improved particle swarm algorithm based on dynamic segmentation and neighborhood reverse learning(基于动态分级和邻域反向学习的改进粒子群算法)RENYanzhi(任燕芝)0https://orcid.org/0000-0003-1109-8050School of Mathematics and Statistics, Xidian University, Xi 'an 710126, China(西安电子科技大学数学与统计学院,陕西 西安 710126)针对粒子群算法容易陷入局部最优解的问题,提出了一种基于动态分级和邻域反向学习的改进粒子群算法.该算法通过构建动态分级机制,将种群中的粒子动态地划分成3个等级,对不同等级内的粒子采取不同的扰动行为,使得粒子在增强种群多样性的同时保持向全局最优方向进化;采用粒子智能更新方式,提高了粒子的搜索能力;引入动态邻域反向学习点建立全局搜索策略,促使种群快速寻优.最后,利用多种典型测试函数对该算法进行仿真实验,结果表明,与其他几种优化算法相比,本算法具有较好的收敛性和稳定性.https://doi.org/10.3785/j.issn.1008-9497.2018.03.001粒子群算法动态分级机制邻域反向学习全局搜索策略
spellingShingle RENYanzhi(任燕芝)
An improved particle swarm algorithm based on dynamic segmentation and neighborhood reverse learning(基于动态分级和邻域反向学习的改进粒子群算法)
Zhejiang Daxue xuebao. Lixue ban
粒子群算法
动态分级机制
邻域反向学习
全局搜索策略
title An improved particle swarm algorithm based on dynamic segmentation and neighborhood reverse learning(基于动态分级和邻域反向学习的改进粒子群算法)
title_full An improved particle swarm algorithm based on dynamic segmentation and neighborhood reverse learning(基于动态分级和邻域反向学习的改进粒子群算法)
title_fullStr An improved particle swarm algorithm based on dynamic segmentation and neighborhood reverse learning(基于动态分级和邻域反向学习的改进粒子群算法)
title_full_unstemmed An improved particle swarm algorithm based on dynamic segmentation and neighborhood reverse learning(基于动态分级和邻域反向学习的改进粒子群算法)
title_short An improved particle swarm algorithm based on dynamic segmentation and neighborhood reverse learning(基于动态分级和邻域反向学习的改进粒子群算法)
title_sort improved particle swarm algorithm based on dynamic segmentation and neighborhood reverse learning 基于动态分级和邻域反向学习的改进粒子群算法
topic 粒子群算法
动态分级机制
邻域反向学习
全局搜索策略
url https://doi.org/10.3785/j.issn.1008-9497.2018.03.001
work_keys_str_mv AT renyanzhirènyànzhī animprovedparticleswarmalgorithmbasedondynamicsegmentationandneighborhoodreverselearningjīyúdòngtàifēnjíhélínyùfǎnxiàngxuéxídegǎijìnlìziqúnsuànfǎ
AT renyanzhirènyànzhī improvedparticleswarmalgorithmbasedondynamicsegmentationandneighborhoodreverselearningjīyúdòngtàifēnjíhélínyùfǎnxiàngxuéxídegǎijìnlìziqúnsuànfǎ