Existence results and a priori estimates for solutions of quasilinear problems with gradient terms

In this paper we establish a priori estimates and then an existence theorem of positive solutions for a Dirichlet problem on a bounded smooth domain in \(\mathbb{R}^N\) with a nonlinearity involving gradient terms. The existence result is proved with no use of a Liouville theorem for the limit probl...

Full description

Bibliographic Details
Main Authors: Roberta Filippucci, Chiara Lini
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2019-01-01
Series:Opuscula Mathematica
Subjects:
Online Access:https://www.opuscula.agh.edu.pl/vol39/2/art/opuscula_math_3913.pdf
Description
Summary:In this paper we establish a priori estimates and then an existence theorem of positive solutions for a Dirichlet problem on a bounded smooth domain in \(\mathbb{R}^N\) with a nonlinearity involving gradient terms. The existence result is proved with no use of a Liouville theorem for the limit problem obtained via the usual blow up method, in particular we refer to the modified version by Ruiz. In particular our existence theorem extends a result by Lorca and Ubilla in two directions, namely by considering a nonlinearity which includes in the gradient term a power of \(u\) and by removing the growth condition for the nonlinearity \(f\) at \(u=0\).
ISSN:1232-9274