Kinetic Modeling of the Photocatalytic Degradation of Chlorinated Aromatic Volatile Organic Compounds: Mass Transfer Enhancement

Chlorobenzene (CB) and Chloronaphthalene (CN) emissions from cement plant operations pose significant environmental risks. This study investigates the mass transfer effects of chlorinated aromatic Volatile Organic Compounds (VOCs), specifically CB and CN, in the gas phase of a continuous-tangential-...

Full description

Bibliographic Details
Main Authors: N’Zanon Aly Koné, Amine Aymen Assadi, Nacer Belkessa, Lotfi Khezami, Sandotin Lassina Coulibaly, Youcef Serhane, Walid Elfalleh, Lacina Coulibaly, Abdelkrim Bouzaza, Abdeltif Amrane
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/14/4/1507
_version_ 1797299052442812416
author N’Zanon Aly Koné
Amine Aymen Assadi
Nacer Belkessa
Lotfi Khezami
Sandotin Lassina Coulibaly
Youcef Serhane
Walid Elfalleh
Lacina Coulibaly
Abdelkrim Bouzaza
Abdeltif Amrane
author_facet N’Zanon Aly Koné
Amine Aymen Assadi
Nacer Belkessa
Lotfi Khezami
Sandotin Lassina Coulibaly
Youcef Serhane
Walid Elfalleh
Lacina Coulibaly
Abdelkrim Bouzaza
Abdeltif Amrane
author_sort N’Zanon Aly Koné
collection DOAJ
description Chlorobenzene (CB) and Chloronaphthalene (CN) emissions from cement plant operations pose significant environmental risks. This study investigates the mass transfer effects of chlorinated aromatic Volatile Organic Compounds (VOCs), specifically CB and CN, in the gas phase of a continuous-tangential-flow annular photocatalytic reactor. The experiments involved introducing CB and CN into the reactor, and the degradation kinetics were analyzed using the Langmuir–Hinshelwood (L-H) model. The L-H model was applied to assess the impact of the flow rate, concentration, and relative humidity (% RH) on the degradation rate (DR). The results indicate that both the experimental and simulated degradation rates improved with increased flow rates (1 to 9 m<sup>3</sup>·h<sup>−1</sup>) and inlet concentrations (30 to 216 mg·m<sup>−3</sup>). This enhancement of the DR correlates with the availability of active OH* species on the TiO<sub>2</sub> surface. The L-H model emphasizes the role of H<sub>2</sub>O molecules in VOC removal kinetics. The degradation rates increased with a rising water content (5 to 55%), but adverse effects on VOC conversion were observed beyond a 55% RH. This study reveals a mass transfer effect, with internal diffusional limitations in the TiO<sub>2</sub> pores under operational conditions. The kinetics were predominantly controlled by chemical kinetics and catalyst pore availability. Furthermore, this study demonstrates a higher CB degradation than CN in the reactor and experimental conditions. For a concentration of 1.328 mM·m<sup>−3</sup>, the CB DR ranged from 0.70 to 2.84 µM·m<sup>2</sup>·s<sup>−1</sup>, as the flow rate varied from 1 to 9 m<sup>3</sup>·h<sup>−1</sup>. The CN DR varied from 0.60 to 2.20 µM·m<sup>2</sup>·s<sup>−1</sup> within the same flow rate range.
first_indexed 2024-03-07T22:43:57Z
format Article
id doaj.art-ccb29280c4f94068a371cecfa8efe1ff
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-03-07T22:43:57Z
publishDate 2024-02-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-ccb29280c4f94068a371cecfa8efe1ff2024-02-23T15:06:13ZengMDPI AGApplied Sciences2076-34172024-02-01144150710.3390/app14041507Kinetic Modeling of the Photocatalytic Degradation of Chlorinated Aromatic Volatile Organic Compounds: Mass Transfer EnhancementN’Zanon Aly Koné0Amine Aymen Assadi1Nacer Belkessa2Lotfi Khezami3Sandotin Lassina Coulibaly4Youcef Serhane5Walid Elfalleh6Lacina Coulibaly7Abdelkrim Bouzaza8Abdeltif Amrane9UFR d’Ingénierie Agronomique Forestière et Environnementale, Université de Man, Man M139PL, Côte d’IvoireCollege of Engineering, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi ArabiaÉcole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)–UMR 6226, Université Rennes, F-35000 Rennes, FranceChemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi ArabiaUFR d’Ingénierie Agronomique Forestière et Environnementale, Université de Man, Man M139PL, Côte d’IvoireÉcole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)–UMR 6226, Université Rennes, F-35000 Rennes, FranceEnergy, Water, Environment and Process Laboratory, National Engineering School of Gabes, University of Gabes, Gabes 6072, TunisiaUFR d’Ingénierie Agronomique Forestière et Environnementale, Université de Man, Man M139PL, Côte d’IvoireÉcole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)–UMR 6226, Université Rennes, F-35000 Rennes, FranceÉcole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)–UMR 6226, Université Rennes, F-35000 Rennes, FranceChlorobenzene (CB) and Chloronaphthalene (CN) emissions from cement plant operations pose significant environmental risks. This study investigates the mass transfer effects of chlorinated aromatic Volatile Organic Compounds (VOCs), specifically CB and CN, in the gas phase of a continuous-tangential-flow annular photocatalytic reactor. The experiments involved introducing CB and CN into the reactor, and the degradation kinetics were analyzed using the Langmuir–Hinshelwood (L-H) model. The L-H model was applied to assess the impact of the flow rate, concentration, and relative humidity (% RH) on the degradation rate (DR). The results indicate that both the experimental and simulated degradation rates improved with increased flow rates (1 to 9 m<sup>3</sup>·h<sup>−1</sup>) and inlet concentrations (30 to 216 mg·m<sup>−3</sup>). This enhancement of the DR correlates with the availability of active OH* species on the TiO<sub>2</sub> surface. The L-H model emphasizes the role of H<sub>2</sub>O molecules in VOC removal kinetics. The degradation rates increased with a rising water content (5 to 55%), but adverse effects on VOC conversion were observed beyond a 55% RH. This study reveals a mass transfer effect, with internal diffusional limitations in the TiO<sub>2</sub> pores under operational conditions. The kinetics were predominantly controlled by chemical kinetics and catalyst pore availability. Furthermore, this study demonstrates a higher CB degradation than CN in the reactor and experimental conditions. For a concentration of 1.328 mM·m<sup>−3</sup>, the CB DR ranged from 0.70 to 2.84 µM·m<sup>2</sup>·s<sup>−1</sup>, as the flow rate varied from 1 to 9 m<sup>3</sup>·h<sup>−1</sup>. The CN DR varied from 0.60 to 2.20 µM·m<sup>2</sup>·s<sup>−1</sup> within the same flow rate range.https://www.mdpi.com/2076-3417/14/4/1507air treatmentreactor modelingmass transferpilot scalerelative humidity
spellingShingle N’Zanon Aly Koné
Amine Aymen Assadi
Nacer Belkessa
Lotfi Khezami
Sandotin Lassina Coulibaly
Youcef Serhane
Walid Elfalleh
Lacina Coulibaly
Abdelkrim Bouzaza
Abdeltif Amrane
Kinetic Modeling of the Photocatalytic Degradation of Chlorinated Aromatic Volatile Organic Compounds: Mass Transfer Enhancement
Applied Sciences
air treatment
reactor modeling
mass transfer
pilot scale
relative humidity
title Kinetic Modeling of the Photocatalytic Degradation of Chlorinated Aromatic Volatile Organic Compounds: Mass Transfer Enhancement
title_full Kinetic Modeling of the Photocatalytic Degradation of Chlorinated Aromatic Volatile Organic Compounds: Mass Transfer Enhancement
title_fullStr Kinetic Modeling of the Photocatalytic Degradation of Chlorinated Aromatic Volatile Organic Compounds: Mass Transfer Enhancement
title_full_unstemmed Kinetic Modeling of the Photocatalytic Degradation of Chlorinated Aromatic Volatile Organic Compounds: Mass Transfer Enhancement
title_short Kinetic Modeling of the Photocatalytic Degradation of Chlorinated Aromatic Volatile Organic Compounds: Mass Transfer Enhancement
title_sort kinetic modeling of the photocatalytic degradation of chlorinated aromatic volatile organic compounds mass transfer enhancement
topic air treatment
reactor modeling
mass transfer
pilot scale
relative humidity
url https://www.mdpi.com/2076-3417/14/4/1507
work_keys_str_mv AT nzanonalykone kineticmodelingofthephotocatalyticdegradationofchlorinatedaromaticvolatileorganiccompoundsmasstransferenhancement
AT amineaymenassadi kineticmodelingofthephotocatalyticdegradationofchlorinatedaromaticvolatileorganiccompoundsmasstransferenhancement
AT nacerbelkessa kineticmodelingofthephotocatalyticdegradationofchlorinatedaromaticvolatileorganiccompoundsmasstransferenhancement
AT lotfikhezami kineticmodelingofthephotocatalyticdegradationofchlorinatedaromaticvolatileorganiccompoundsmasstransferenhancement
AT sandotinlassinacoulibaly kineticmodelingofthephotocatalyticdegradationofchlorinatedaromaticvolatileorganiccompoundsmasstransferenhancement
AT youcefserhane kineticmodelingofthephotocatalyticdegradationofchlorinatedaromaticvolatileorganiccompoundsmasstransferenhancement
AT walidelfalleh kineticmodelingofthephotocatalyticdegradationofchlorinatedaromaticvolatileorganiccompoundsmasstransferenhancement
AT lacinacoulibaly kineticmodelingofthephotocatalyticdegradationofchlorinatedaromaticvolatileorganiccompoundsmasstransferenhancement
AT abdelkrimbouzaza kineticmodelingofthephotocatalyticdegradationofchlorinatedaromaticvolatileorganiccompoundsmasstransferenhancement
AT abdeltifamrane kineticmodelingofthephotocatalyticdegradationofchlorinatedaromaticvolatileorganiccompoundsmasstransferenhancement