Peramalan dan dekomposisi untuk mata uang kripto dengan model facebook prophet

Cryptocurrencies are becoming one of the hottest topics in Indonesia's society. One of those issues concerns investors who incur financial losses as a result of investing in crypto. The facebook Prophet model, one of the forecast models, can offer a solution to this problem. The Prophet model i...

Full description

Bibliographic Details
Main Authors: Dany Rahman, Dewi Rachmatin, Rini Marwati
Format: Article
Language:English
Published: Department of Mathematics FMIPA University of Jember 2024-03-01
Series:Majalah Ilmiah Matematika dan Statistika
Online Access:https://jurnal.unej.ac.id/index.php/MIMS/article/view/39159
_version_ 1827300554677682176
author Dany Rahman
Dewi Rachmatin
Rini Marwati
author_facet Dany Rahman
Dewi Rachmatin
Rini Marwati
author_sort Dany Rahman
collection DOAJ
description Cryptocurrencies are becoming one of the hottest topics in Indonesia's society. One of those issues concerns investors who incur financial losses as a result of investing in crypto. The facebook Prophet model, one of the forecast models, can offer a solution to this problem. The Prophet model is built using four function. These variables are trend, seasonality, holidays, and additional regressions. The Prophet model benefits from a number of advantages, one of which is its ability to generate decomposition graphs. The decomposition may give analysts more insight into the data they are analyzing. The Prophet model is used to forecast and decompose the price of a cryptocurrenciy called Solana in this study. A multiplicative model with linear function as trend function, weekly seasonality, and daily seasonality as seasonality function is the best model for Solana price forecasting and decomposition. Additionally, hyperparameters in the model are tuned so the model won’t suffer underfitting or overfitting indications. The fitted Prophet model is good at forecasting as a result of the evaluation process. As a result of the forecast and decomposition, the forecasted value and the decomposition graph of the Solana exchange rate for one hour later show that the price of Solana will remain constant. Keywords: Cryptocurrency, time series, forecasting, decomposition, facebook prophet MSC2020: 62M10
first_indexed 2024-04-24T16:06:54Z
format Article
id doaj.art-ccb5988d726c4b99a987cdc2c2682121
institution Directory Open Access Journal
issn 1411-6669
2722-9866
language English
last_indexed 2024-04-24T16:06:54Z
publishDate 2024-03-01
publisher Department of Mathematics FMIPA University of Jember
record_format Article
series Majalah Ilmiah Matematika dan Statistika
spelling doaj.art-ccb5988d726c4b99a987cdc2c26821212024-04-01T03:57:46ZengDepartment of Mathematics FMIPA University of JemberMajalah Ilmiah Matematika dan Statistika1411-66692722-98662024-03-01241486010.19184/mims.v24i1.3915939159Peramalan dan dekomposisi untuk mata uang kripto dengan model facebook prophetDany Rahman0Dewi Rachmatin1Rini Marwati2Departemen Pendidikan Matematika, FPMIPA, Universitas Pendidikan IndonesiaDepartemen Pendidikan Matematika, FPMIPA, Universitas Pendidikan IndonesiaDepartemen Pendidikan Matematika, FPMIPA, Universitas Pendidikan IndonesiaCryptocurrencies are becoming one of the hottest topics in Indonesia's society. One of those issues concerns investors who incur financial losses as a result of investing in crypto. The facebook Prophet model, one of the forecast models, can offer a solution to this problem. The Prophet model is built using four function. These variables are trend, seasonality, holidays, and additional regressions. The Prophet model benefits from a number of advantages, one of which is its ability to generate decomposition graphs. The decomposition may give analysts more insight into the data they are analyzing. The Prophet model is used to forecast and decompose the price of a cryptocurrenciy called Solana in this study. A multiplicative model with linear function as trend function, weekly seasonality, and daily seasonality as seasonality function is the best model for Solana price forecasting and decomposition. Additionally, hyperparameters in the model are tuned so the model won’t suffer underfitting or overfitting indications. The fitted Prophet model is good at forecasting as a result of the evaluation process. As a result of the forecast and decomposition, the forecasted value and the decomposition graph of the Solana exchange rate for one hour later show that the price of Solana will remain constant. Keywords: Cryptocurrency, time series, forecasting, decomposition, facebook prophet MSC2020: 62M10https://jurnal.unej.ac.id/index.php/MIMS/article/view/39159
spellingShingle Dany Rahman
Dewi Rachmatin
Rini Marwati
Peramalan dan dekomposisi untuk mata uang kripto dengan model facebook prophet
Majalah Ilmiah Matematika dan Statistika
title Peramalan dan dekomposisi untuk mata uang kripto dengan model facebook prophet
title_full Peramalan dan dekomposisi untuk mata uang kripto dengan model facebook prophet
title_fullStr Peramalan dan dekomposisi untuk mata uang kripto dengan model facebook prophet
title_full_unstemmed Peramalan dan dekomposisi untuk mata uang kripto dengan model facebook prophet
title_short Peramalan dan dekomposisi untuk mata uang kripto dengan model facebook prophet
title_sort peramalan dan dekomposisi untuk mata uang kripto dengan model facebook prophet
url https://jurnal.unej.ac.id/index.php/MIMS/article/view/39159
work_keys_str_mv AT danyrahman peramalandandekomposisiuntukmatauangkriptodenganmodelfacebookprophet
AT dewirachmatin peramalandandekomposisiuntukmatauangkriptodenganmodelfacebookprophet
AT rinimarwati peramalandandekomposisiuntukmatauangkriptodenganmodelfacebookprophet