Sensor Fault Diagnosis for Aero Engine Based on Online Sequential Extreme Learning Machine with Memory Principle

The on-board sensor fault detection and isolation (FDI) system is essential to guarantee the reliability and safety of an aero engine. In this paper, a novel online sequential extreme learning machine with memory principle (MOS-ELM) is proposed for detecting, isolating, and reconstructing the fault...

Full description

Bibliographic Details
Main Authors: Junjie Lu, Jinquan Huang, Feng Lu
Format: Article
Language:English
Published: MDPI AG 2017-01-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/10/1/39
Description
Summary:The on-board sensor fault detection and isolation (FDI) system is essential to guarantee the reliability and safety of an aero engine. In this paper, a novel online sequential extreme learning machine with memory principle (MOS-ELM) is proposed for detecting, isolating, and reconstructing the fault sensor signal of aero engines. In many practical online applications, the sequentially coming data chunk usually possesses a characteristic of timeliness, and the overdue training data may mislead the subsequent learning process. The proposed MOS-ELM can improve the training process by introducing the concept of memory principle into the online sequential extreme learning machine (OS-ELM) to tackle the timeliness of the data chunk. Simulations on some time series problems and some benchmark databases show that MOS-ELM performs better in generalization performance, stability, and prediction accuracy than OS-ELM. The experiment results of the MOS-ELM-based sensor fault diagnosis system also verify the excellent generalization performance of MOS-ELM and indicate the effectiveness and feasibility of the developed diagnosis system.
ISSN:1996-1073