Adaptive Clustering through Multi-Agent Technology: Development and Perspectives

The paper is devoted to an overview of multi-agent principles, methods, and technologies intended to adaptive real-time data clustering. The proposed methods provide new principles of self-organization of records and clusters, represented by software agents, making it possible to increase the adapta...

Full description

Bibliographic Details
Main Authors: Sergey Grachev, Petr Skobelev, Igor Mayorov, Elena Simonova
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/10/1664
Description
Summary:The paper is devoted to an overview of multi-agent principles, methods, and technologies intended to adaptive real-time data clustering. The proposed methods provide new principles of self-organization of records and clusters, represented by software agents, making it possible to increase the adaptability of different clustering processes significantly. The paper also presents a comparative review of the methods and results recently developed in this area and their industrial applications. An ability of self-organization of items and clusters suggests a new perspective to form groups in a bottom-up online fashion together with continuous adaption previously obtained decisions. Multi-agent technology allows implementing this methodology in a parallel and asynchronous multi-thread manner, providing highly flexible, scalable, and reliable solutions. Industrial applications of the intended for solving too complex engineering problems are discussed together with several practical examples of data clustering in manufacturing applications, such as the pre-analysis of customer datasets in the sales process, pattern discovery, and ongoing forecasting and consolidation of orders and resources in logistics, clustering semantic networks in insurance document processing. Future research is outlined in the areas such as capturing the semantics of problem domains and guided self-organization on the virtual market.
ISSN:2227-7390