Chatter Stability Prediction for Deep-Cavity Turning of a Bent-Blade Cutter
The bent-blade cutter is widely used in machining typical deep-cavity parts such as turbine discs and disc shafts, but few scholars have studied the dynamics of the turning process. The existing mechanism of regenerative chatter in the metal-cutting process does not consider the influence of bending...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-01-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/24/2/606 |
_version_ | 1827369361877237760 |
---|---|
author | Xiaojuan Wang Qinghua Song Zhanqiang Liu |
author_facet | Xiaojuan Wang Qinghua Song Zhanqiang Liu |
author_sort | Xiaojuan Wang |
collection | DOAJ |
description | The bent-blade cutter is widely used in machining typical deep-cavity parts such as turbine discs and disc shafts, but few scholars have studied the dynamics of the turning process. The existing mechanism of regenerative chatter in the metal-cutting process does not consider the influence of bending and torsional vibration, the change of tool profile and the complex machining geometry, so it cannot be directly used to reveal the underlying cause of the chatter phenomena in the deep inner cavity part turning process. This paper attempts to investigate the dynamic problem of the bent-blade cutter turning process. The dynamic model of a bent-blade cutter is proposed by considering the regenerative chatter effect. Based on the extended Timoshenko beam element (E-TBM) theory and finite element method (FEM), the coupling between the bending vibrations and the torsional vibrations, as well as the dynamic cutting forces, are modeled along the turning path. The vibration characteristics of the bending–torsion combination of cutter board and cutter bar, together with the dynamical governing equation, were analyzed theoretically. The chatter stability of a bent-blade cutter with a bending and torsion combination effect is predicted in the turning process. A series of turning experiments are carried out to verify the accuracy and efficiency of the presented model. Furthermore, the influence of cutting parameters on the cutting process is analyzed, and the results can be used to optimize the cutting parameters for suppressing machining vibration and improving machining process stability. |
first_indexed | 2024-03-08T09:47:04Z |
format | Article |
id | doaj.art-cccf1e72c2f744c3afe69925ee62ee99 |
institution | Directory Open Access Journal |
issn | 1424-8220 |
language | English |
last_indexed | 2024-03-08T09:47:04Z |
publishDate | 2024-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Sensors |
spelling | doaj.art-cccf1e72c2f744c3afe69925ee62ee992024-01-29T14:17:01ZengMDPI AGSensors1424-82202024-01-0124260610.3390/s24020606Chatter Stability Prediction for Deep-Cavity Turning of a Bent-Blade CutterXiaojuan Wang0Qinghua Song1Zhanqiang Liu2Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, ChinaKey Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, ChinaKey Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, ChinaThe bent-blade cutter is widely used in machining typical deep-cavity parts such as turbine discs and disc shafts, but few scholars have studied the dynamics of the turning process. The existing mechanism of regenerative chatter in the metal-cutting process does not consider the influence of bending and torsional vibration, the change of tool profile and the complex machining geometry, so it cannot be directly used to reveal the underlying cause of the chatter phenomena in the deep inner cavity part turning process. This paper attempts to investigate the dynamic problem of the bent-blade cutter turning process. The dynamic model of a bent-blade cutter is proposed by considering the regenerative chatter effect. Based on the extended Timoshenko beam element (E-TBM) theory and finite element method (FEM), the coupling between the bending vibrations and the torsional vibrations, as well as the dynamic cutting forces, are modeled along the turning path. The vibration characteristics of the bending–torsion combination of cutter board and cutter bar, together with the dynamical governing equation, were analyzed theoretically. The chatter stability of a bent-blade cutter with a bending and torsion combination effect is predicted in the turning process. A series of turning experiments are carried out to verify the accuracy and efficiency of the presented model. Furthermore, the influence of cutting parameters on the cutting process is analyzed, and the results can be used to optimize the cutting parameters for suppressing machining vibration and improving machining process stability.https://www.mdpi.com/1424-8220/24/2/606deep-cavity partsturningbent-blade cutterstability predictionparameter optimization |
spellingShingle | Xiaojuan Wang Qinghua Song Zhanqiang Liu Chatter Stability Prediction for Deep-Cavity Turning of a Bent-Blade Cutter Sensors deep-cavity parts turning bent-blade cutter stability prediction parameter optimization |
title | Chatter Stability Prediction for Deep-Cavity Turning of a Bent-Blade Cutter |
title_full | Chatter Stability Prediction for Deep-Cavity Turning of a Bent-Blade Cutter |
title_fullStr | Chatter Stability Prediction for Deep-Cavity Turning of a Bent-Blade Cutter |
title_full_unstemmed | Chatter Stability Prediction for Deep-Cavity Turning of a Bent-Blade Cutter |
title_short | Chatter Stability Prediction for Deep-Cavity Turning of a Bent-Blade Cutter |
title_sort | chatter stability prediction for deep cavity turning of a bent blade cutter |
topic | deep-cavity parts turning bent-blade cutter stability prediction parameter optimization |
url | https://www.mdpi.com/1424-8220/24/2/606 |
work_keys_str_mv | AT xiaojuanwang chatterstabilitypredictionfordeepcavityturningofabentbladecutter AT qinghuasong chatterstabilitypredictionfordeepcavityturningofabentbladecutter AT zhanqiangliu chatterstabilitypredictionfordeepcavityturningofabentbladecutter |