On the Timelike Circular Surface and Singularities in Minkowski 3-Space

In this paper, we have parameterized a timelike (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">T</mi><mi>l</mi><mi>i</mi><mi>k...

Full description

Bibliographic Details
Main Authors: Areej A. Almoneef, Rashad A. Abdel-Baky
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/10/989
_version_ 1797574753686388736
author Areej A. Almoneef
Rashad A. Abdel-Baky
author_facet Areej A. Almoneef
Rashad A. Abdel-Baky
author_sort Areej A. Almoneef
collection DOAJ
description In this paper, we have parameterized a timelike (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">T</mi><mi>l</mi><mi>i</mi><mi>k</mi><mi>e</mi></mrow></semantics></math></inline-formula>) circular surface (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">CI</mi><mspace width="4pt"></mspace><mi mathvariant="italic">surface</mi></mrow></semantics></math></inline-formula>) and have obtained its geometric properties, including striction curves, singularities, Gaussian and mean curvatures. Afterward, the situation for a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">T</mi><mi>l</mi><mi>i</mi><mi>k</mi><mi>e</mi></mrow></semantics></math></inline-formula> roller coaster surface (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">RCO</mi><mspace width="4pt"></mspace><mi mathvariant="italic">surface</mi></mrow></semantics></math></inline-formula>) to be a flat or minimal surface is examined in detail. Further, we illustrate the approach’s outcomes with a number of pertinent examples.
first_indexed 2024-03-10T21:26:49Z
format Article
id doaj.art-ccd168af26124b0ca936adfdb5434939
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-10T21:26:49Z
publishDate 2023-10-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-ccd168af26124b0ca936adfdb54349392023-11-19T15:38:55ZengMDPI AGAxioms2075-16802023-10-01121098910.3390/axioms12100989On the Timelike Circular Surface and Singularities in Minkowski 3-SpaceAreej A. Almoneef0Rashad A. Abdel-Baky1Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi ArabiaDepartment of Mathematics, Faculty of Science, University of Assiut, Assiut 71516, EgyptIn this paper, we have parameterized a timelike (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">T</mi><mi>l</mi><mi>i</mi><mi>k</mi><mi>e</mi></mrow></semantics></math></inline-formula>) circular surface (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">CI</mi><mspace width="4pt"></mspace><mi mathvariant="italic">surface</mi></mrow></semantics></math></inline-formula>) and have obtained its geometric properties, including striction curves, singularities, Gaussian and mean curvatures. Afterward, the situation for a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">T</mi><mi>l</mi><mi>i</mi><mi>k</mi><mi>e</mi></mrow></semantics></math></inline-formula> roller coaster surface (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">RCO</mi><mspace width="4pt"></mspace><mi mathvariant="italic">surface</mi></mrow></semantics></math></inline-formula>) to be a flat or minimal surface is examined in detail. Further, we illustrate the approach’s outcomes with a number of pertinent examples.https://www.mdpi.com/2075-1680/12/10/989striction curvesingularitiestimelike roller coaster surfaces
spellingShingle Areej A. Almoneef
Rashad A. Abdel-Baky
On the Timelike Circular Surface and Singularities in Minkowski 3-Space
Axioms
striction curve
singularities
timelike roller coaster surfaces
title On the Timelike Circular Surface and Singularities in Minkowski 3-Space
title_full On the Timelike Circular Surface and Singularities in Minkowski 3-Space
title_fullStr On the Timelike Circular Surface and Singularities in Minkowski 3-Space
title_full_unstemmed On the Timelike Circular Surface and Singularities in Minkowski 3-Space
title_short On the Timelike Circular Surface and Singularities in Minkowski 3-Space
title_sort on the timelike circular surface and singularities in minkowski 3 space
topic striction curve
singularities
timelike roller coaster surfaces
url https://www.mdpi.com/2075-1680/12/10/989
work_keys_str_mv AT areejaalmoneef onthetimelikecircularsurfaceandsingularitiesinminkowski3space
AT rashadaabdelbaky onthetimelikecircularsurfaceandsingularitiesinminkowski3space