Impact of Melatonin Deficit on Emotional Status and Oxidative Stress-Induced Changes in Sphingomyelin and Cholesterol Level in Young Adult, Mature, and Aged Rats
The pineal gland regulates the aging process via the hormone melatonin. The present report aims to evaluate the effect of pinealectomy (pin) on behavioral and oxidative stress-induced alterations in cholesterol and sphingomyelin (SM) levels in young adult, mature and aging rats. Sham and pin rats ag...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-03-01
|
Series: | International Journal of Molecular Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/1422-0067/23/5/2809 |
Summary: | The pineal gland regulates the aging process via the hormone melatonin. The present report aims to evaluate the effect of pinealectomy (pin) on behavioral and oxidative stress-induced alterations in cholesterol and sphingomyelin (SM) levels in young adult, mature and aging rats. Sham and pin rats aged 3, 14 and 18 months were tested in behavioral tests for motor activity, anxiety, and depression. The ELISA test explored oxidative stress parameters and SM in the hippocampus, while total cholesterol was measured in serum via a commercial autoanalyzer. Mature and aged sham rats showed low motor activity and increased anxiety compared to the youngest rats. Pinealectomy affected emotional responses, induced depressive-like behavior, and elevated cholesterol levels in the youngest rats. However, removal of the pineal gland enhanced oxidative stress by diminishing antioxidant capacity and increasing the MDA level, and decreased SM level in the hippocampus of 14-month-old rats. Our findings suggest that young adult rats are vulnerable to emotional disturbance and changes in cholesterol levels resulting from melatonin deficiency. In contrast, mature rats with pinealectomy are exposed to an oxidative stress-induced decrease in SM levels in the hippocampus. |
---|---|
ISSN: | 1661-6596 1422-0067 |