Nonlinear Spectra for Parameter Dependent Ordinary Differential Equations

Eigenvalue problems of the form x 00 = −λf(x) + µg(x), (i), x(0) = 0, x(1) = 0 (ii) are considered. We are looking for (λ, µ) such that the problem (i), (ii) has a nontrivial solution. This problem generalizes the famous Fuchik problem for piece-wise linear equations. In our considerations functions...

Full description

Bibliographic Details
Main Authors: F. Sadyrbaev, A. Gritsans
Format: Article
Language:English
Published: Vilnius University Press 2007-04-01
Series:Nonlinear Analysis
Subjects:
Online Access:http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/14715
_version_ 1818384699047804928
author F. Sadyrbaev
A. Gritsans
author_facet F. Sadyrbaev
A. Gritsans
author_sort F. Sadyrbaev
collection DOAJ
description Eigenvalue problems of the form x 00 = −λf(x) + µg(x), (i), x(0) = 0, x(1) = 0 (ii) are considered. We are looking for (λ, µ) such that the problem (i), (ii) has a nontrivial solution. This problem generalizes the famous Fuchik problem for piece-wise linear equations. In our considerations functions f and g may be super-, sub- and quasi-linear in various combinations. The spectra obtained under the normalization condition (otherwise problems may have continuous spectra) structurally are similar to usual Fuchik spectrum for the Dirichlet problem. We provide explicit formulas for Fuchik spectra for super and super, super and sub, sub and super, sub and sub cases, where superlinear and sublinear parts of equations are of the form |x| 2α x and |x| 1 2β+1 respectively (α > 0, β > 0.)
first_indexed 2024-12-14T03:26:24Z
format Article
id doaj.art-ccf28276a8c647978d6efcbda173f301
institution Directory Open Access Journal
issn 1392-5113
2335-8963
language English
last_indexed 2024-12-14T03:26:24Z
publishDate 2007-04-01
publisher Vilnius University Press
record_format Article
series Nonlinear Analysis
spelling doaj.art-ccf28276a8c647978d6efcbda173f3012022-12-21T23:18:53ZengVilnius University PressNonlinear Analysis1392-51132335-89632007-04-0112210.15388/NA.2007.12.2.14715Nonlinear Spectra for Parameter Dependent Ordinary Differential EquationsF. Sadyrbaev0A. Gritsans1Daugavpils University, LatviaDaugavpils University, LatviaEigenvalue problems of the form x 00 = −λf(x) + µg(x), (i), x(0) = 0, x(1) = 0 (ii) are considered. We are looking for (λ, µ) such that the problem (i), (ii) has a nontrivial solution. This problem generalizes the famous Fuchik problem for piece-wise linear equations. In our considerations functions f and g may be super-, sub- and quasi-linear in various combinations. The spectra obtained under the normalization condition (otherwise problems may have continuous spectra) structurally are similar to usual Fuchik spectrum for the Dirichlet problem. We provide explicit formulas for Fuchik spectra for super and super, super and sub, sub and super, sub and sub cases, where superlinear and sublinear parts of equations are of the form |x| 2α x and |x| 1 2β+1 respectively (α > 0, β > 0.)http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/14715nonlinear spectrajumping nonlinearityasymptotically asymmetric nonlinearitiesFuchik spectrum
spellingShingle F. Sadyrbaev
A. Gritsans
Nonlinear Spectra for Parameter Dependent Ordinary Differential Equations
Nonlinear Analysis
nonlinear spectra
jumping nonlinearity
asymptotically asymmetric nonlinearities
Fuchik spectrum
title Nonlinear Spectra for Parameter Dependent Ordinary Differential Equations
title_full Nonlinear Spectra for Parameter Dependent Ordinary Differential Equations
title_fullStr Nonlinear Spectra for Parameter Dependent Ordinary Differential Equations
title_full_unstemmed Nonlinear Spectra for Parameter Dependent Ordinary Differential Equations
title_short Nonlinear Spectra for Parameter Dependent Ordinary Differential Equations
title_sort nonlinear spectra for parameter dependent ordinary differential equations
topic nonlinear spectra
jumping nonlinearity
asymptotically asymmetric nonlinearities
Fuchik spectrum
url http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/14715
work_keys_str_mv AT fsadyrbaev nonlinearspectraforparameterdependentordinarydifferentialequations
AT agritsans nonlinearspectraforparameterdependentordinarydifferentialequations