Review on autoencoder and its application
As a typical deep unsupervised learning model, autoencoder can automatically learn effective abstract features from unlabeled samples.In recent years, autoencoder has been widely used in target recognition, intrusion detection, fault diagnosis and many other fields.Thus, the theoretical basis, impro...
Main Authors: | Jie LAI, Xiaodan WANG, Qian XIANG, Yafei SONG, Wen QUAN |
---|---|
Format: | Article |
Sprog: | zho |
Udgivet: |
Editorial Department of Journal on Communications
2021-09-01
|
Serier: | Tongxin xuebao |
Fag: | |
Online adgang: | http://www.joconline.com.cn/zh/article/doi/10.11959/j.issn.1000-436x.2021160/ |
Lignende værker
-
Review on autoencoder and its application
af: Jie LAI, et al.
Udgivet: (2021-09-01) -
A Semi-Supervised Stacked Autoencoder Using the Pseudo Label for Classification Tasks
af: Jie Lai, et al.
Udgivet: (2023-08-01) -
An Efficient Multi-Sensor Remote Sensing Image Clustering in Urban Areas via Boosted Convolutional Autoencoder (BCAE)
af: Maryam Rahimzad, et al.
Udgivet: (2021-06-01) -
Unsupervised Outlier Detection via Transformation Invariant Autoencoder
af: Zhen Cheng, et al.
Udgivet: (2021-01-01) -
Comparative Study on Three Autoencoder‐Based Deep Learning Algorithms for Geochemical Anomaly Identification
af: Bin Feng, et al.
Udgivet: (2022-11-01)