Review on autoencoder and its application
As a typical deep unsupervised learning model, autoencoder can automatically learn effective abstract features from unlabeled samples.In recent years, autoencoder has been widely used in target recognition, intrusion detection, fault diagnosis and many other fields.Thus, the theoretical basis, impro...
Hlavní autoři: | Jie LAI, Xiaodan WANG, Qian XIANG, Yafei SONG, Wen QUAN |
---|---|
Médium: | Článek |
Jazyk: | zho |
Vydáno: |
Editorial Department of Journal on Communications
2021-09-01
|
Edice: | Tongxin xuebao |
Témata: | |
On-line přístup: | http://www.joconline.com.cn/zh/article/doi/10.11959/j.issn.1000-436x.2021160/ |
Podobné jednotky
-
Review on autoencoder and its application
Autor: Jie LAI, a další
Vydáno: (2021-09-01) -
A Semi-Supervised Stacked Autoencoder Using the Pseudo Label for Classification Tasks
Autor: Jie Lai, a další
Vydáno: (2023-08-01) -
An Efficient Multi-Sensor Remote Sensing Image Clustering in Urban Areas via Boosted Convolutional Autoencoder (BCAE)
Autor: Maryam Rahimzad, a další
Vydáno: (2021-06-01) -
Unsupervised Outlier Detection via Transformation Invariant Autoencoder
Autor: Zhen Cheng, a další
Vydáno: (2021-01-01) -
Comparative Study on Three Autoencoder‐Based Deep Learning Algorithms for Geochemical Anomaly Identification
Autor: Bin Feng, a další
Vydáno: (2022-11-01)