Review on autoencoder and its application
As a typical deep unsupervised learning model, autoencoder can automatically learn effective abstract features from unlabeled samples.In recent years, autoencoder has been widely used in target recognition, intrusion detection, fault diagnosis and many other fields.Thus, the theoretical basis, impro...
主要な著者: | Jie LAI, Xiaodan WANG, Qian XIANG, Yafei SONG, Wen QUAN |
---|---|
フォーマット: | 論文 |
言語: | zho |
出版事項: |
Editorial Department of Journal on Communications
2021-09-01
|
シリーズ: | Tongxin xuebao |
主題: | |
オンライン・アクセス: | http://www.joconline.com.cn/zh/article/doi/10.11959/j.issn.1000-436x.2021160/ |
類似資料
-
Review on autoencoder and its application
著者:: Jie LAI, 等
出版事項: (2021-09-01) -
A Semi-Supervised Stacked Autoencoder Using the Pseudo Label for Classification Tasks
著者:: Jie Lai, 等
出版事項: (2023-08-01) -
An Efficient Multi-Sensor Remote Sensing Image Clustering in Urban Areas via Boosted Convolutional Autoencoder (BCAE)
著者:: Maryam Rahimzad, 等
出版事項: (2021-06-01) -
Unsupervised Outlier Detection via Transformation Invariant Autoencoder
著者:: Zhen Cheng, 等
出版事項: (2021-01-01) -
Comparative Study on Three Autoencoder‐Based Deep Learning Algorithms for Geochemical Anomaly Identification
著者:: Bin Feng, 等
出版事項: (2022-11-01)