Autologous bone marrow stromal cells are promising candidates for cell therapy approaches to treat bone degeneration in sickle cell disease

Osteonecrosis of the femoral head is a frequent complication in adult patients with sickle cell disease (SCD). To delay hip arthroplasty, core decompression combined with concentrated total bone marrow (BM) treatment is currently performed in the early stages of the osteonecrosis. Cell therapy effic...

Full description

Bibliographic Details
Main Authors: Angélique Lebouvier, Alexandre Poignard, Laura Coquelin-Salsac, Julie Léotot, Yasuhiro Homma, Nicolas Jullien, Philippe Bierling, Frédéric Galactéros, Philippe Hernigou, Nathalie Chevallier, Hélène Rouard
Format: Article
Language:English
Published: Elsevier 2015-11-01
Series:Stem Cell Research
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1873506115001361
Description
Summary:Osteonecrosis of the femoral head is a frequent complication in adult patients with sickle cell disease (SCD). To delay hip arthroplasty, core decompression combined with concentrated total bone marrow (BM) treatment is currently performed in the early stages of the osteonecrosis. Cell therapy efficacy depends on the quantity of implanted BM stromal cells. For this reason, expanded bone marrow stromal cells (BMSCs, also known as bone marrow derived mesenchymal stem cells) can be used to improve osteonecrosis treatment in SCD patients. In this study, we quantitatively and qualitatively evaluated the function of BMSCs isolated from a large number of SCD patients with osteonecrosis (SCD-ON) compared with control groups (patients with osteonecrosis not related to SCD (ON) and normal donors (N)). BM total nuclear cells and colony-forming efficiency values (CFE) were significantly higher in SCD-ON patients than in age and sex-matched controls. The BMSCs from SCD-ON patients were similar to BMSCs from the control groups in terms of their phenotypic and functional properties. SCD-ON patients have a higher frequency of BMSCs that retain their bone regeneration potential. Our findings suggest that BMSCs isolated from SCD-ON patients can be used clinically in cell therapy approaches. This work provides important preclinical data that is necessary for the clinical application of expanded BMSCs in advanced therapies and medical products.
ISSN:1873-5061
1876-7753