Analysis of the Temporal and Spatial Characteristics of PWV and Rainfall with the Typhoon Movement: A Case Study of ‘Meihua’ in 2022

The serious and frequent typhoon activities can easily cause extreme precipitation weather in the eastern coastal area of China, which is affected by land and sea differences. To explore the temporal and spatial characteristics of Precipitable Water Vapor (PWV) and rainfall during the typhoon period...

Full description

Bibliographic Details
Main Authors: Zhikun Li, Jin Wang, Changhao Wei, Jiaye Yu
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/14/8/1313
_version_ 1797585560676597760
author Zhikun Li
Jin Wang
Changhao Wei
Jiaye Yu
author_facet Zhikun Li
Jin Wang
Changhao Wei
Jiaye Yu
author_sort Zhikun Li
collection DOAJ
description The serious and frequent typhoon activities can easily cause extreme precipitation weather in the eastern coastal area of China, which is affected by land and sea differences. To explore the temporal and spatial characteristics of Precipitable Water Vapor (PWV) and rainfall during the typhoon period, the data of the conspicuous case named ‘Meihua’ in 2022 is adopted in analysis. In this paper, firstly, the accuracy of the PWV retrieved by ERA5 was evaluated, which met the experimental analysis requirements, compared with the conference value of the Radiosonde (RS). Secondly, the correlation between PWV, rainfall and the typhoon path were analyzed qualitatively and quantitatively, using 16 meteorological stations in the typhoon path. The results indicated that PWV reached its peak value 2–6 h than rainfall, which was an important reference for rainfall forecasting. Then, the ‘Pearson correlation coefficient’ method was used for the quantitative evaluation of the correlation between PWV and the distance of the ‘weather station-typhoon’. The results showed that PWV had an obvious upward trend, with a decrease in the distance between the ‘weather station-typhoon’. The variation in PWV is intense at a reduced distance, and can reach its peak 16 h before the arrival of the typhoon. A strong negative correlation was demonstrated, with an average value of −0.73 for the Pearson correlation coefficient. Analyzing the temporal and spatial changes of the typhoon track, PWV and rainfall, the results show that before the typhoon passes through the region, both the PWV and rainfall certainly reach their maximum. The variation trends of PWV and rainfall in the period of the typhoon are significantly consistent. The center of PWV and rainfall is mainly located on the northwest side of the typhoon center, which showed obvious asymmetry.
first_indexed 2024-03-11T00:07:53Z
format Article
id doaj.art-cd188dcabf554b63a7e9b6e068fdab95
institution Directory Open Access Journal
issn 2073-4433
language English
last_indexed 2024-03-11T00:07:53Z
publishDate 2023-08-01
publisher MDPI AG
record_format Article
series Atmosphere
spelling doaj.art-cd188dcabf554b63a7e9b6e068fdab952023-11-19T00:13:42ZengMDPI AGAtmosphere2073-44332023-08-01148131310.3390/atmos14081313Analysis of the Temporal and Spatial Characteristics of PWV and Rainfall with the Typhoon Movement: A Case Study of ‘Meihua’ in 2022Zhikun Li0Jin Wang1Changhao Wei2Jiaye Yu3College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 299590, ChinaCollege of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 299590, ChinaCollege of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 299590, ChinaCollege of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 299590, ChinaThe serious and frequent typhoon activities can easily cause extreme precipitation weather in the eastern coastal area of China, which is affected by land and sea differences. To explore the temporal and spatial characteristics of Precipitable Water Vapor (PWV) and rainfall during the typhoon period, the data of the conspicuous case named ‘Meihua’ in 2022 is adopted in analysis. In this paper, firstly, the accuracy of the PWV retrieved by ERA5 was evaluated, which met the experimental analysis requirements, compared with the conference value of the Radiosonde (RS). Secondly, the correlation between PWV, rainfall and the typhoon path were analyzed qualitatively and quantitatively, using 16 meteorological stations in the typhoon path. The results indicated that PWV reached its peak value 2–6 h than rainfall, which was an important reference for rainfall forecasting. Then, the ‘Pearson correlation coefficient’ method was used for the quantitative evaluation of the correlation between PWV and the distance of the ‘weather station-typhoon’. The results showed that PWV had an obvious upward trend, with a decrease in the distance between the ‘weather station-typhoon’. The variation in PWV is intense at a reduced distance, and can reach its peak 16 h before the arrival of the typhoon. A strong negative correlation was demonstrated, with an average value of −0.73 for the Pearson correlation coefficient. Analyzing the temporal and spatial changes of the typhoon track, PWV and rainfall, the results show that before the typhoon passes through the region, both the PWV and rainfall certainly reach their maximum. The variation trends of PWV and rainfall in the period of the typhoon are significantly consistent. The center of PWV and rainfall is mainly located on the northwest side of the typhoon center, which showed obvious asymmetry.https://www.mdpi.com/2073-4433/14/8/1313PWVdistance of ‘weather station-typhoon’rainfalltemporal–spatial correlation‘Meihua’ Typhoon
spellingShingle Zhikun Li
Jin Wang
Changhao Wei
Jiaye Yu
Analysis of the Temporal and Spatial Characteristics of PWV and Rainfall with the Typhoon Movement: A Case Study of ‘Meihua’ in 2022
Atmosphere
PWV
distance of ‘weather station-typhoon’
rainfall
temporal–spatial correlation
‘Meihua’ Typhoon
title Analysis of the Temporal and Spatial Characteristics of PWV and Rainfall with the Typhoon Movement: A Case Study of ‘Meihua’ in 2022
title_full Analysis of the Temporal and Spatial Characteristics of PWV and Rainfall with the Typhoon Movement: A Case Study of ‘Meihua’ in 2022
title_fullStr Analysis of the Temporal and Spatial Characteristics of PWV and Rainfall with the Typhoon Movement: A Case Study of ‘Meihua’ in 2022
title_full_unstemmed Analysis of the Temporal and Spatial Characteristics of PWV and Rainfall with the Typhoon Movement: A Case Study of ‘Meihua’ in 2022
title_short Analysis of the Temporal and Spatial Characteristics of PWV and Rainfall with the Typhoon Movement: A Case Study of ‘Meihua’ in 2022
title_sort analysis of the temporal and spatial characteristics of pwv and rainfall with the typhoon movement a case study of meihua in 2022
topic PWV
distance of ‘weather station-typhoon’
rainfall
temporal–spatial correlation
‘Meihua’ Typhoon
url https://www.mdpi.com/2073-4433/14/8/1313
work_keys_str_mv AT zhikunli analysisofthetemporalandspatialcharacteristicsofpwvandrainfallwiththetyphoonmovementacasestudyofmeihuain2022
AT jinwang analysisofthetemporalandspatialcharacteristicsofpwvandrainfallwiththetyphoonmovementacasestudyofmeihuain2022
AT changhaowei analysisofthetemporalandspatialcharacteristicsofpwvandrainfallwiththetyphoonmovementacasestudyofmeihuain2022
AT jiayeyu analysisofthetemporalandspatialcharacteristicsofpwvandrainfallwiththetyphoonmovementacasestudyofmeihuain2022