To Calculation of Rectangular Plates on Periodic Oscillations

Geometrically nonlinear mathematical model of the problem of parametric oscillations of a viscoelastic orthotropic plate of variable thickness is developed using the classical Kirchhoff-Love hypothesis. The technique of the nonlinear problem solution by applying the Bubnov-Galerkin method at polynom...

Full description

Bibliographic Details
Main Authors: Abdikarimov Rustamkhan, Khodzhaev Dadakhan, Vatin Nikolay
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201824501003
Description
Summary:Geometrically nonlinear mathematical model of the problem of parametric oscillations of a viscoelastic orthotropic plate of variable thickness is developed using the classical Kirchhoff-Love hypothesis. The technique of the nonlinear problem solution by applying the Bubnov-Galerkin method at polynomial approximation of displacements (and deflection) and a numerical method that uses quadrature formula are proposed. The Koltunov-Rzhanitsyn kernel with three different rheological parameters is chosen as a weakly singular kernel. Parametric oscillations of viscoelastic orthotropic plates of variable thickness under the effect of an external load are investigated. The effect on the domain of dynamic instability of geometric nonlinearity, viscoelastic properties of material, as well as other physical-mechanical and geometric parameters and factors are taken into account. The results obtained are in good agreement with the results and data of other authors.
ISSN:2261-236X