Spectral Dependence of the Energy Transfer from Photosynthetic Complexes to Monolayer Graphene

Fluorescence excitation spectroscopy at cryogenic temperatures carried out on hybrid assemblies composed of photosynthetic complexes deposited on a monolayer graphene revealed that the efficiency of energy transfer to graphene strongly depended on the excitation wavelength. The efficiency of this en...

Full description

Bibliographic Details
Main Authors: Marcin Szalkowski, Alessandro Surrente, Kamil Wiwatowski, Zhuo Yang, Nan Zhang, Julian D. Janna Olmos, Joanna Kargul, Paulina Plochocka, Sebastian Maćkowski
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/23/7/3493
Description
Summary:Fluorescence excitation spectroscopy at cryogenic temperatures carried out on hybrid assemblies composed of photosynthetic complexes deposited on a monolayer graphene revealed that the efficiency of energy transfer to graphene strongly depended on the excitation wavelength. The efficiency of this energy transfer was greatly enhanced in the blue-green spectral region. We observed clear resonance-like behavior for both a simple light-harvesting antenna containing only two chlorophyll molecules (PCP) and a large photochemically active reaction center associated with the light-harvesting antenna (PSI–LHCI), which pointed towards the general character of this effect.
ISSN:1661-6596
1422-0067