Impact of Phosphorous Fertilization on Rape and Common Vetch Intercropped Fodder and Soil Phosphorus Dynamics in North China

This study explores the effect of phosphorus (P) fractions, under P addition or not, based on a common vetch-rape model cropping system in alkaline soil. A two year field experiment was conducted at Tuzuo Banner modern agricultural Park in Inner Mongolia, China. Two phosphorus levels, including P0 (...

Full description

Bibliographic Details
Main Authors: Jiahui Qu, Lijun Li, Peiyi Zhao, Dongyu Han, Xinyao Zhao, Yanli Zhang, Li Han, Ying Wang
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Agriculture
Subjects:
Online Access:https://www.mdpi.com/2077-0472/12/11/1949
Description
Summary:This study explores the effect of phosphorus (P) fractions, under P addition or not, based on a common vetch-rape model cropping system in alkaline soil. A two year field experiment was conducted at Tuzuo Banner modern agricultural Park in Inner Mongolia, China. Two phosphorus levels, including P0 (no fertilizer) and P45 (45 kg·ha<sup>−1</sup> P), were performed in common vetch and rape either grown alone or intercropped. We analyzed the changes of the physicochemical properties and phosphorus fractions in the rhizosphere soil. Intercropping enhanced the common vetch and rape yield by 42.05% and 24.91%, on average, compared with corresponding sole cropping on an equivalent area basis. The average land equivalent ratio (LER) was 1.34. Intercropping had a significant AP concentration, of 65.32% and 33.99% at the P0 level, and 62.83% and 36.19% at the P45 level, respectively, compared to that of the sole common vetch and rape. With the application of P, intercropping improved the Resin-Pi and NaHCO<sub>3</sub>-Pi fraction (61.17%, 87.03% at the P0 level and 96.50%, 41.85% at the P45 level, compared to monocropped common vetch and rape in 2019). The changes in NaOH-Pi and NaOH-Po (except for NaOH-Pi in 2019) showed no significant difference between cropping systems. Intercropping significantly accumulated concentrations of HCl-P, while depleting Residual-P, in 2020. In conclusion, common vetch/rape with the addition of P polyculture stimulated rhizosphere soil P mobilization and had a yield advantage over sole cropping.
ISSN:2077-0472