Fog radio access network system control scheme based on the embedded game model

Abstract As a promising paradigm for the 5G wireless communication system, a new evolution of the cloud radio access networks has been proposed, named as fog radio access networks (F-RANs). It is an advanced socially aware mobile networking architecture to provide a high spectral and energy efficien...

Full description

Bibliographic Details
Main Author: Sungwook Kim
Format: Article
Language:English
Published: SpringerOpen 2017-06-01
Series:EURASIP Journal on Wireless Communications and Networking
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13638-017-0900-9
Description
Summary:Abstract As a promising paradigm for the 5G wireless communication system, a new evolution of the cloud radio access networks has been proposed, named as fog radio access networks (F-RANs). It is an advanced socially aware mobile networking architecture to provide a high spectral and energy efficiency while reducing backhaul burden. In particular, F-RANs take full advantages of social information and edge computing to efficiently alleviate the end-to-end latency. Based on the benefit of edge and cloud processing, key issues of F-RAN technique are radio resource allocation, caching, and service admission control. In this paper, we develop a novel F-RAN system control scheme based on the embedded game model. In the proposed scheme, spectrum allocation, cache placement, and service admission algorithms are jointly designed to maximize system efficiency. By developing a new embedded game methodology, our approach can capture the dynamics of F-RAN system and effectively compromises the centralized optimality with decentralized distribution intelligence for the faster and less complex decision making process. Through simulations, we compare the performance of our scheme to the existing studies and show how we can achieve a better performance under dynamic F-RAN system environments.
ISSN:1687-1499