Molecular understanding of new-particle formation from <i>α</i>-pinene between −50 and +25 °C
<p>Highly oxygenated organic molecules (HOMs) contribute substantially to the formation and growth of atmospheric aerosol particles, which affect air quality, human health and Earth's climate. HOMs are formed by rapid, gas-phase autoxidation of volatile organic compounds (VOCs) such as &l...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-08-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/20/9183/2020/acp-20-9183-2020.pdf |
_version_ | 1818300478987960320 |
---|---|
author | M. Simon L. Dada M. Heinritzi W. Scholz W. Scholz D. Stolzenburg L. Fischer A. C. Wagner A. C. Wagner A. Kürten B. Rörup X.-C. He J. Almeida J. Almeida R. Baalbaki A. Baccarini P. S. Bauer L. Beck A. Bergen F. Bianchi S. Bräkling S. Brilke L. Caudillo D. Chen B. Chu A. Dias A. Dias D. C. Draper J. Duplissy J. Duplissy I. El-Haddad H. Finkenzeller C. Frege L. Gonzalez-Carracedo H. Gordon H. Gordon M. Granzin J. Hakala V. Hofbauer C. R. Hoyle C. R. Hoyle C. Kim C. Kim W. Kong H. Lamkaddam C. P. Lee K. Lehtipalo K. Lehtipalo M. Leiminger M. Leiminger H. Mai H. E. Manninen G. Marie R. Marten B. Mentler U. Molteni L. Nichman L. Nichman W. Nie A. Ojdanic A. Onnela E. Partoll T. Petäjä J. Pfeifer J. Pfeifer M. Philippov L. L. J. Quéléver A. Ranjithkumar M. P. Rissanen M. P. Rissanen S. Schallhart S. Schallhart S. Schobesberger S. Schuchmann J. Shen M. Sipilä G. Steiner G. Steiner Y. Stozhkov C. Tauber Y. J. Tham A. R. Tomé M. Vazquez-Pufleau A. L. Vogel A. L. Vogel R. Wagner M. Wang D. S. Wang Y. Wang S. K. Weber Y. Wu M. Xiao C. Yan P. Ye P. Ye Q. Ye M. Zauner-Wieczorek X. Zhou X. Zhou U. Baltensperger J. Dommen R. C. Flagan A. Hansel A. Hansel M. Kulmala M. Kulmala M. Kulmala M. Kulmala R. Volkamer P. M. Winkler D. R. Worsnop D. R. Worsnop D. R. Worsnop N. M. Donahue J. Kirkby J. Kirkby J. Curtius |
author_facet | M. Simon L. Dada M. Heinritzi W. Scholz W. Scholz D. Stolzenburg L. Fischer A. C. Wagner A. C. Wagner A. Kürten B. Rörup X.-C. He J. Almeida J. Almeida R. Baalbaki A. Baccarini P. S. Bauer L. Beck A. Bergen F. Bianchi S. Bräkling S. Brilke L. Caudillo D. Chen B. Chu A. Dias A. Dias D. C. Draper J. Duplissy J. Duplissy I. El-Haddad H. Finkenzeller C. Frege L. Gonzalez-Carracedo H. Gordon H. Gordon M. Granzin J. Hakala V. Hofbauer C. R. Hoyle C. R. Hoyle C. Kim C. Kim W. Kong H. Lamkaddam C. P. Lee K. Lehtipalo K. Lehtipalo M. Leiminger M. Leiminger H. Mai H. E. Manninen G. Marie R. Marten B. Mentler U. Molteni L. Nichman L. Nichman W. Nie A. Ojdanic A. Onnela E. Partoll T. Petäjä J. Pfeifer J. Pfeifer M. Philippov L. L. J. Quéléver A. Ranjithkumar M. P. Rissanen M. P. Rissanen S. Schallhart S. Schallhart S. Schobesberger S. Schuchmann J. Shen M. Sipilä G. Steiner G. Steiner Y. Stozhkov C. Tauber Y. J. Tham A. R. Tomé M. Vazquez-Pufleau A. L. Vogel A. L. Vogel R. Wagner M. Wang D. S. Wang Y. Wang S. K. Weber Y. Wu M. Xiao C. Yan P. Ye P. Ye Q. Ye M. Zauner-Wieczorek X. Zhou X. Zhou U. Baltensperger J. Dommen R. C. Flagan A. Hansel A. Hansel M. Kulmala M. Kulmala M. Kulmala M. Kulmala R. Volkamer P. M. Winkler D. R. Worsnop D. R. Worsnop D. R. Worsnop N. M. Donahue J. Kirkby J. Kirkby J. Curtius |
author_sort | M. Simon |
collection | DOAJ |
description | <p>Highly oxygenated organic molecules (HOMs) contribute
substantially to the formation and growth of atmospheric aerosol particles,
which affect air quality, human health and Earth's climate. HOMs are formed
by rapid, gas-phase autoxidation of volatile organic compounds (VOCs) such
as <span class="inline-formula"><i>α</i></span>-pinene, the most abundant monoterpene in the atmosphere. Due to
their abundance and low volatility, HOMs can play an important role in
new-particle formation (NPF) and the early growth of atmospheric aerosols,
even without any further assistance of other low-volatility compounds such
as sulfuric acid. Both the autoxidation reaction forming HOMs and their
NPF rates are expected to be strongly dependent on
temperature. However, experimental data on both effects are limited.
Dedicated experiments were performed at the CLOUD (Cosmics Leaving OUtdoor
Droplets) chamber at CERN to address this question. In this study, we show
that a decrease in temperature (from <span class="inline-formula">+25</span> to <span class="inline-formula">−50</span> <span class="inline-formula"><sup>∘</sup></span>C) results in
a reduced HOM yield and reduced oxidation state of the products, whereas the
NPF rates (<span class="inline-formula"><i>J</i><sub>1.7 nm</sub></span>) increase substantially.
Measurements with two different chemical ionization mass spectrometers
(using nitrate and protonated water as reagent ion, respectively) provide
the molecular composition of the gaseous oxidation products, and a
two-dimensional volatility basis set (2D VBS) model provides their volatility
distribution. The HOM yield decreases with temperature from 6.2 % at 25 <span class="inline-formula"><sup>∘</sup></span>C to 0.7 % at <span class="inline-formula">−50</span> <span class="inline-formula"><sup>∘</sup></span>C. However, there is a strong
reduction of the saturation vapor pressure of each oxidation state as the
temperature is reduced. Overall, the reduction in volatility with
temperature leads to an increase in the nucleation rates by up to 3
orders of magnitude at <span class="inline-formula">−50</span> <span class="inline-formula"><sup>∘</sup></span>C compared with 25 <span class="inline-formula"><sup>∘</sup></span>C. In
addition, the enhancement of the nucleation rates by ions decreases with
decreasing temperature, since the neutral molecular clusters have increased
stability against evaporation. The resulting data quantify how the interplay
between the temperature-dependent oxidation pathways and the associated
vapor pressures affect biogenic NPF at the molecular
level. Our measurements, therefore, improve our understanding of pure
biogenic NPF for a wide range of tropospheric
temperatures and precursor concentrations.</p> |
first_indexed | 2024-12-13T05:07:46Z |
format | Article |
id | doaj.art-cd6a89fdefa44cc2a7737d2c81b3b521 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-13T05:07:46Z |
publishDate | 2020-08-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-cd6a89fdefa44cc2a7737d2c81b3b5212022-12-21T23:58:38ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242020-08-01209183920710.5194/acp-20-9183-2020Molecular understanding of new-particle formation from <i>α</i>-pinene between −50 and +25 °CM. Simon0L. Dada1M. Heinritzi2W. Scholz3W. Scholz4D. Stolzenburg5L. Fischer6A. C. Wagner7A. C. Wagner8A. Kürten9B. Rörup10X.-C. He11J. Almeida12J. Almeida13R. Baalbaki14A. Baccarini15P. S. Bauer16L. Beck17A. Bergen18F. Bianchi19S. Bräkling20S. Brilke21L. Caudillo22D. Chen23B. Chu24A. Dias25A. Dias26D. C. Draper27J. Duplissy28J. Duplissy29I. El-Haddad30H. Finkenzeller31C. Frege32L. Gonzalez-Carracedo33H. Gordon34H. Gordon35M. Granzin36J. Hakala37V. Hofbauer38C. R. Hoyle39C. R. Hoyle40C. Kim41C. Kim42W. Kong43H. Lamkaddam44C. P. Lee45K. Lehtipalo46K. Lehtipalo47M. Leiminger48M. Leiminger49H. Mai50H. E. Manninen51G. Marie52R. Marten53B. Mentler54U. Molteni55L. Nichman56L. Nichman57W. Nie58A. Ojdanic59A. Onnela60E. Partoll61T. Petäjä62J. Pfeifer63J. Pfeifer64M. Philippov65L. L. J. Quéléver66A. Ranjithkumar67M. P. Rissanen68M. P. Rissanen69S. Schallhart70S. Schallhart71S. Schobesberger72S. Schuchmann73J. Shen74M. Sipilä75G. Steiner76G. Steiner77Y. Stozhkov78C. Tauber79Y. J. Tham80A. R. Tomé81M. Vazquez-Pufleau82A. L. Vogel83A. L. Vogel84R. Wagner85M. Wang86D. S. Wang87Y. Wang88S. K. Weber89Y. Wu90M. Xiao91C. Yan92P. Ye93P. Ye94Q. Ye95M. Zauner-Wieczorek96X. Zhou97X. Zhou98U. Baltensperger99J. Dommen100R. C. Flagan101A. Hansel102A. Hansel103M. Kulmala104M. Kulmala105M. Kulmala106M. Kulmala107R. Volkamer108P. M. Winkler109D. R. Worsnop110D. R. Worsnop111D. R. Worsnop112N. M. Donahue113J. Kirkby114J. Kirkby115J. Curtius116Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, GermanyInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, FinlandInstitute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, GermanyInstitute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, 6020, AustriaIonicon Analytik GmbH, Innsbruck, 6020, AustriaFaculty of Physics, University of Vienna, Vienna, 1090, AustriaInstitute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, 6020, AustriaInstitute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, GermanyDepartment of Chemistry & CIRES, University of Colorado Boulder, Boulder, CO 80309-0215, USAInstitute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, GermanyInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, FinlandInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, FinlandCERN, Geneva, 1211, SwitzerlandFaculdade de Ciências, Universidade de Lisboa, Lisbon, 1749-016, PortugalInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, FinlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, PSI, Villigen, 5232, SwitzerlandFaculty of Physics, University of Vienna, Vienna, 1090, AustriaInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, FinlandInstitute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, GermanyInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, FinlandTOFWERK AG, Thun, 3600, SwitzerlandFaculty of Physics, University of Vienna, Vienna, 1090, AustriaInstitute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, GermanyCenter for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USAInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, FinlandCERN, Geneva, 1211, SwitzerlandFaculdade de Ciências, Universidade de Lisboa, Lisbon, 1749-016, PortugalDepartment of Chemistry, University of California, Irvine, CA 92697, USAInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, FinlandHelsinki Institute of Physics, University of Helsinki, Helsinki, 00014, FinlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, PSI, Villigen, 5232, SwitzerlandDepartment of Chemistry & CIRES, University of Colorado Boulder, Boulder, CO 80309-0215, USALaboratory of Atmospheric Chemistry, Paul Scherrer Institute, PSI, Villigen, 5232, SwitzerlandFaculty of Physics, University of Vienna, Vienna, 1090, AustriaCenter for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USAHelsinki Institute of Physics, University of Helsinki, Helsinki, 00014, FinlandInstitute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, GermanyInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, FinlandCenter for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USALaboratory of Atmospheric Chemistry, Paul Scherrer Institute, PSI, Villigen, 5232, SwitzerlandInstitute for Atmospheric and Climate Science, Swiss Federal Institute of Technology, Zurich, 8092, SwitzerlandSchool of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of KoreaDivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USADivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USALaboratory of Atmospheric Chemistry, Paul Scherrer Institute, PSI, Villigen, 5232, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, PSI, Villigen, 5232, SwitzerlandInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, FinlandFinnish Meteorological Institute, Helsinki, 00560, FinlandInstitute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, 6020, AustriaIonicon Analytik GmbH, Innsbruck, 6020, AustriaDivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USACERN, Geneva, 1211, SwitzerlandInstitute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, GermanyLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, PSI, Villigen, 5232, SwitzerlandInstitute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, 6020, AustriaLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, PSI, Villigen, 5232, SwitzerlandDepartment of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UKpresent address: Aerospace Research Centre, National Research Council of Canada, Ottawa, ON, K1V 9B4, CanadaJoint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu Province, ChinaFaculty of Physics, University of Vienna, Vienna, 1090, AustriaCERN, Geneva, 1211, SwitzerlandInstitute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, 6020, AustriaInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, FinlandInstitute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, GermanyCERN, Geneva, 1211, SwitzerlandP. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, 119991, RussiaInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, FinlandSchool of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UKInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, FinlandAerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, 33101 Tampere, FinlandInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, FinlandFinnish Meteorological Institute, Helsinki, 00560, FinlandDepartment of Applied Physics, University of Eastern Finland, Kuopio, 70211, FinlandCERN, Geneva, 1211, SwitzerlandInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, FinlandInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, FinlandInstitute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, 6020, Austriapresent address: Grimm Aerosol Technik Ainring GmbH & Co KG, 83404 Ainring, GermanyP. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, 119991, RussiaFaculty of Physics, University of Vienna, Vienna, 1090, AustriaInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, FinlandIDL, Universidade da Beira Interior, R. Marquês de Ávila e Bolama, Covilhã, 6201-001, PortugalFaculty of Physics, University of Vienna, Vienna, 1090, AustriaInstitute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, GermanyCERN, Geneva, 1211, SwitzerlandInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, FinlandCenter for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USALaboratory of Atmospheric Chemistry, Paul Scherrer Institute, PSI, Villigen, 5232, SwitzerlandInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, FinlandCERN, Geneva, 1211, SwitzerlandInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, FinlandCERN, Geneva, 1211, SwitzerlandInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, FinlandCenter for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USAAerodyne Research Inc., Billerica, MA 01821, USACenter for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USAInstitute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, GermanyInstitute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, GermanyLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, PSI, Villigen, 5232, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, PSI, Villigen, 5232, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, PSI, Villigen, 5232, SwitzerlandDivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USAInstitute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, 6020, AustriaIonicon Analytik GmbH, Innsbruck, 6020, AustriaInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, FinlandHelsinki Institute of Physics, University of Helsinki, Helsinki, 00014, FinlandJoint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu Province, ChinaAerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, ChinaDepartment of Chemistry & CIRES, University of Colorado Boulder, Boulder, CO 80309-0215, USAFaculty of Physics, University of Vienna, Vienna, 1090, AustriaInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, FinlandTOFWERK AG, Thun, 3600, SwitzerlandAerodyne Research Inc., Billerica, MA 01821, USACenter for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USAInstitute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, GermanyCERN, Geneva, 1211, SwitzerlandInstitute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany<p>Highly oxygenated organic molecules (HOMs) contribute substantially to the formation and growth of atmospheric aerosol particles, which affect air quality, human health and Earth's climate. HOMs are formed by rapid, gas-phase autoxidation of volatile organic compounds (VOCs) such as <span class="inline-formula"><i>α</i></span>-pinene, the most abundant monoterpene in the atmosphere. Due to their abundance and low volatility, HOMs can play an important role in new-particle formation (NPF) and the early growth of atmospheric aerosols, even without any further assistance of other low-volatility compounds such as sulfuric acid. Both the autoxidation reaction forming HOMs and their NPF rates are expected to be strongly dependent on temperature. However, experimental data on both effects are limited. Dedicated experiments were performed at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN to address this question. In this study, we show that a decrease in temperature (from <span class="inline-formula">+25</span> to <span class="inline-formula">−50</span> <span class="inline-formula"><sup>∘</sup></span>C) results in a reduced HOM yield and reduced oxidation state of the products, whereas the NPF rates (<span class="inline-formula"><i>J</i><sub>1.7 nm</sub></span>) increase substantially. Measurements with two different chemical ionization mass spectrometers (using nitrate and protonated water as reagent ion, respectively) provide the molecular composition of the gaseous oxidation products, and a two-dimensional volatility basis set (2D VBS) model provides their volatility distribution. The HOM yield decreases with temperature from 6.2 % at 25 <span class="inline-formula"><sup>∘</sup></span>C to 0.7 % at <span class="inline-formula">−50</span> <span class="inline-formula"><sup>∘</sup></span>C. However, there is a strong reduction of the saturation vapor pressure of each oxidation state as the temperature is reduced. Overall, the reduction in volatility with temperature leads to an increase in the nucleation rates by up to 3 orders of magnitude at <span class="inline-formula">−50</span> <span class="inline-formula"><sup>∘</sup></span>C compared with 25 <span class="inline-formula"><sup>∘</sup></span>C. In addition, the enhancement of the nucleation rates by ions decreases with decreasing temperature, since the neutral molecular clusters have increased stability against evaporation. The resulting data quantify how the interplay between the temperature-dependent oxidation pathways and the associated vapor pressures affect biogenic NPF at the molecular level. Our measurements, therefore, improve our understanding of pure biogenic NPF for a wide range of tropospheric temperatures and precursor concentrations.</p>https://acp.copernicus.org/articles/20/9183/2020/acp-20-9183-2020.pdf |
spellingShingle | M. Simon L. Dada M. Heinritzi W. Scholz W. Scholz D. Stolzenburg L. Fischer A. C. Wagner A. C. Wagner A. Kürten B. Rörup X.-C. He J. Almeida J. Almeida R. Baalbaki A. Baccarini P. S. Bauer L. Beck A. Bergen F. Bianchi S. Bräkling S. Brilke L. Caudillo D. Chen B. Chu A. Dias A. Dias D. C. Draper J. Duplissy J. Duplissy I. El-Haddad H. Finkenzeller C. Frege L. Gonzalez-Carracedo H. Gordon H. Gordon M. Granzin J. Hakala V. Hofbauer C. R. Hoyle C. R. Hoyle C. Kim C. Kim W. Kong H. Lamkaddam C. P. Lee K. Lehtipalo K. Lehtipalo M. Leiminger M. Leiminger H. Mai H. E. Manninen G. Marie R. Marten B. Mentler U. Molteni L. Nichman L. Nichman W. Nie A. Ojdanic A. Onnela E. Partoll T. Petäjä J. Pfeifer J. Pfeifer M. Philippov L. L. J. Quéléver A. Ranjithkumar M. P. Rissanen M. P. Rissanen S. Schallhart S. Schallhart S. Schobesberger S. Schuchmann J. Shen M. Sipilä G. Steiner G. Steiner Y. Stozhkov C. Tauber Y. J. Tham A. R. Tomé M. Vazquez-Pufleau A. L. Vogel A. L. Vogel R. Wagner M. Wang D. S. Wang Y. Wang S. K. Weber Y. Wu M. Xiao C. Yan P. Ye P. Ye Q. Ye M. Zauner-Wieczorek X. Zhou X. Zhou U. Baltensperger J. Dommen R. C. Flagan A. Hansel A. Hansel M. Kulmala M. Kulmala M. Kulmala M. Kulmala R. Volkamer P. M. Winkler D. R. Worsnop D. R. Worsnop D. R. Worsnop N. M. Donahue J. Kirkby J. Kirkby J. Curtius Molecular understanding of new-particle formation from <i>α</i>-pinene between −50 and +25 °C Atmospheric Chemistry and Physics |
title | Molecular understanding of new-particle formation from <i>α</i>-pinene between −50 and +25 °C |
title_full | Molecular understanding of new-particle formation from <i>α</i>-pinene between −50 and +25 °C |
title_fullStr | Molecular understanding of new-particle formation from <i>α</i>-pinene between −50 and +25 °C |
title_full_unstemmed | Molecular understanding of new-particle formation from <i>α</i>-pinene between −50 and +25 °C |
title_short | Molecular understanding of new-particle formation from <i>α</i>-pinene between −50 and +25 °C |
title_sort | molecular understanding of new particle formation from i α i pinene between 50 and 25 thinsp °c |
url | https://acp.copernicus.org/articles/20/9183/2020/acp-20-9183-2020.pdf |
work_keys_str_mv | AT msimon molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT ldada molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT mheinritzi molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT wscholz molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT wscholz molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT dstolzenburg molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT lfischer molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT acwagner molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT acwagner molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT akurten molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT brorup molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT xche molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT jalmeida molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT jalmeida molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT rbaalbaki molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT abaccarini molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT psbauer molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT lbeck molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT abergen molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT fbianchi molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT sbrakling molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT sbrilke molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT lcaudillo molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT dchen molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT bchu molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT adias molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT adias molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT dcdraper molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT jduplissy molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT jduplissy molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT ielhaddad molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT hfinkenzeller molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT cfrege molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT lgonzalezcarracedo molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT hgordon molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT hgordon molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT mgranzin molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT jhakala molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT vhofbauer molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT crhoyle molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT crhoyle molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT ckim molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT ckim molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT wkong molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT hlamkaddam molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT cplee molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT klehtipalo molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT klehtipalo molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT mleiminger molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT mleiminger molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT hmai molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT hemanninen molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT gmarie molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT rmarten molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT bmentler molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT umolteni molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT lnichman molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT lnichman molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT wnie molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT aojdanic molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT aonnela molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT epartoll molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT tpetaja molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT jpfeifer molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT jpfeifer molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT mphilippov molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT lljquelever molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT aranjithkumar molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT mprissanen molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT mprissanen molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT sschallhart molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT sschallhart molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT sschobesberger molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT sschuchmann molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT jshen molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT msipila molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT gsteiner molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT gsteiner molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT ystozhkov molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT ctauber molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT yjtham molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT artome molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT mvazquezpufleau molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT alvogel molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT alvogel molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT rwagner molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT mwang molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT dswang molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT ywang molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT skweber molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT ywu molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT mxiao molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT cyan molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT pye molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT pye molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT qye molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT mzaunerwieczorek molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT xzhou molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT xzhou molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT ubaltensperger molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT jdommen molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT rcflagan molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT ahansel molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT ahansel molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT mkulmala molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT mkulmala molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT mkulmala molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT mkulmala molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT rvolkamer molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT pmwinkler molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT drworsnop molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT drworsnop molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT drworsnop molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT nmdonahue molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT jkirkby molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT jkirkby molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc AT jcurtius molecularunderstandingofnewparticleformationfromiaipinenebetween50and25thinspc |