Deep fusion of multi-modal features for brain tumor image segmentation

Accurate segmentation of pathological regions in brain magnetic resonance images (MRI) is essential for the diagnosis and treatment of brain tumors. Multi-modality MRIs, which offer diverse feature information, are commonly utilized in brain tumor image segmentation. Deep neural networks have become...

Full description

Bibliographic Details
Main Authors: Guying Zhang, Jia Zhou, Guanghua He, Hancan Zhu
Format: Article
Language:English
Published: Elsevier 2023-08-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844023064745
Description
Summary:Accurate segmentation of pathological regions in brain magnetic resonance images (MRI) is essential for the diagnosis and treatment of brain tumors. Multi-modality MRIs, which offer diverse feature information, are commonly utilized in brain tumor image segmentation. Deep neural networks have become prevalent in this field; however, many approaches simply concatenate different modalities and input them directly into the neural network for segmentation, disregarding the unique characteristics and complementarity of each modality. In this study, we propose a brain tumor image segmentation method that leverages deep residual learning with multi-modality image feature fusion. Our approach involves extracting and fusing distinct and complementary features from various modalities, fully exploiting the multi-modality information within a deep convolutional neural network to enhance the performance of brain tumor image segmentation. We evaluate the effectiveness of our proposed method using the BraTS2021 dataset and demonstrate that deep residual learning with multi-modality image feature fusion significantly improves segmentation accuracy. Our method achieves competitive segmentation results, with Dice values of 83.3, 89.07, and 91.44 for enhanced tumor, tumor core, and whole tumor, respectively. These findings highlight the potential of our method in improving brain tumor diagnosis and treatment through accurate segmentation of pathological regions in brain MRIs.
ISSN:2405-8440