Application of Deep-Learning Algorithm Driven Intelligent Raman Spectroscopy Methodology to Quality Control in the Manufacturing Process of Guanxinning Tablets

Coupled with the convolutional neural network (CNN), an intelligent Raman spectroscopy methodology for rapid quantitative analysis of four pharmacodynamic substances and soluble solid in the manufacture process of Guanxinning tablets was established. Raman spectra of 330 real samples were collected...

Full description

Bibliographic Details
Main Authors: Yi Tao, Jiaqi Bao, Qing Liu, Li Liu, Jieqiang Zhu
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/27/20/6969
Description
Summary:Coupled with the convolutional neural network (CNN), an intelligent Raman spectroscopy methodology for rapid quantitative analysis of four pharmacodynamic substances and soluble solid in the manufacture process of Guanxinning tablets was established. Raman spectra of 330 real samples were collected by a portable Raman spectrometer. The contents of danshensu, ferulic acid, rosmarinic acid, and salvianolic acid B were determined with high-performance liquid chromatography-diode array detection (HPLC-DAD), while the content of soluble solid was determined by using an oven-drying method. In the establishing of the CNN calibration model, the spectral characteristic bands were screened out by a competitive adaptive reweighted sampling (CARS) algorithm. The performance of the CNN model is evaluated by root mean square error of calibration (RMSEC), root mean square error of cross-validation (RMSECV), root mean square error of prediction (RMSEP), coefficient of determination of calibration (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>R</mi><mi>c</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula>), coefficient of determination of cross-validation (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>R</mi><mrow><mi>c</mi><mi>v</mi></mrow><mn>2</mn></msubsup></mrow></semantics></math></inline-formula>), and coefficient of determination of validation (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>R</mi><mi>p</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula>). The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>R</mi><mi>p</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> values for soluble solid, salvianolic acid B, danshensu, ferulic acid, and rosmarinic acid are 0.9415, 0.9246, 0.8458, 0.8667, and 0.8491, respectively. The established model was used for the analysis of three batches of unknown samples from the manufacturing process of Guanxinning tablets. As the results show, Raman spectroscopy is faster and more convenient than that of conventional methods, which is helpful for the implementation of process analysis technology (PAT) in the manufacturing process of Guanxinning tablets.
ISSN:1420-3049