Derivation of turbulent energy dissipation rate with the Middle Atmosphere Alomar Radar System (MAARSY) and radiosondes at Andøya, Norway

We present the derivation of turbulent energy dissipation rate <i>ε</i> from a total of 522 days of observations with the Middle Atmosphere Alomar Radar SYstem (MAARSY) mesosphere–stratosphere–troposphere (MST) radar running tropospheric experiments during the period of 2010–2013 as we...

Full description

Bibliographic Details
Main Authors: Q. Li, M. Rapp, A. Schrön, A. Schneider, G. Stober
Format: Article
Language:English
Published: Copernicus Publications 2016-12-01
Series:Annales Geophysicae
Online Access:https://www.ann-geophys.net/34/1209/2016/angeo-34-1209-2016.pdf
_version_ 1811308339303284736
author Q. Li
M. Rapp
M. Rapp
A. Schrön
A. Schneider
G. Stober
author_facet Q. Li
M. Rapp
M. Rapp
A. Schrön
A. Schneider
G. Stober
author_sort Q. Li
collection DOAJ
description We present the derivation of turbulent energy dissipation rate <i>ε</i> from a total of 522 days of observations with the Middle Atmosphere Alomar Radar SYstem (MAARSY) mesosphere–stratosphere–troposphere (MST) radar running tropospheric experiments during the period of 2010–2013 as well as with balloon-borne radiosondes based on a campaign in the summer 2013. Spectral widths are converted to <i>ε</i> after the removal of the broadening effects due to the finite beam width of the radar. With the simultaneous in situ measurements of <i>ε</i> with balloon-borne radiosondes at the MAARSY radar site, we compare the <i>ε</i> values derived from both techniques and reach an encouraging agreement between them. Using all the radar data available, we present a preliminary climatology of atmospheric turbulence in the UTLS (upper troposphere and lower stratosphere) region above the MAARSY site showing a variability of more than 5 orders of magnitude inherent in turbulent energy dissipation rates. The derived <i>ε</i> values reveal a log-normal distribution with a negative skewness, and the <i>ε</i> profiles show an increase with height which is also the case for each individual month. Atmospheric turbulence based on our radar measurements reveals a seasonal variation but no clear diurnal variation in the UTLS region. Comparison of <i>ε</i> with the gradient Richardson number <i>Ri</i> shows that only 1.7 % of all the data with turbulence occur under the condition of <i>Ri</i> &lt; 1 and that the values of <i>ε</i> under the condition of <i>Ri</i> &lt; 1 are significantly larger than those under <i>Ri</i> &gt; 1. Further, there is a roughly negative correlation between <i>ε</i> and <i>Ri</i> that is independent of the scale dependence of <i>Ri</i>. Turbulence under active dynamical conditions (velocity of horizontal wind <i>U</i> &gt; 10 m s<sup>−1</sup>) is significantly stronger than under quiet conditions (<i>U</i> &lt; 10 m s<sup>−1</sup>). Last but not least, the derived <i>ε</i> values are compared with the corresponding vertical shears of background wind velocity showing a linear relation with a corresponding correlation coefficient <i>r</i> = 58 % well above the 99.9 % significance level. This implies that wind shears play an important role in the turbulence generation in the troposphere and lower stratosphere (through the Kelvin–Helmholtz instability).
first_indexed 2024-04-13T09:20:20Z
format Article
id doaj.art-cd999b23eb2f46f3a238c84e397b4fb6
institution Directory Open Access Journal
issn 0992-7689
1432-0576
language English
last_indexed 2024-04-13T09:20:20Z
publishDate 2016-12-01
publisher Copernicus Publications
record_format Article
series Annales Geophysicae
spelling doaj.art-cd999b23eb2f46f3a238c84e397b4fb62022-12-22T02:52:37ZengCopernicus PublicationsAnnales Geophysicae0992-76891432-05762016-12-01341209122910.5194/angeo-34-1209-2016Derivation of turbulent energy dissipation rate with the Middle Atmosphere Alomar Radar System (MAARSY) and radiosondes at Andøya, NorwayQ. Li0M. Rapp1M. Rapp2A. Schrön3A. Schneider4G. Stober5Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, 82234 Oberpfaffenhofen, GermanyDeutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, 82234 Oberpfaffenhofen, Germanyalso at: Meteorologisches Institut München, Ludwig-Maximilians-Universität München, Munich, GermanyLeibniz-Institut für Atmosphärenphysik, 18225 Kühlungsborn, GermanyLeibniz-Institut für Atmosphärenphysik, 18225 Kühlungsborn, GermanyLeibniz-Institut für Atmosphärenphysik, 18225 Kühlungsborn, GermanyWe present the derivation of turbulent energy dissipation rate <i>ε</i> from a total of 522 days of observations with the Middle Atmosphere Alomar Radar SYstem (MAARSY) mesosphere–stratosphere–troposphere (MST) radar running tropospheric experiments during the period of 2010–2013 as well as with balloon-borne radiosondes based on a campaign in the summer 2013. Spectral widths are converted to <i>ε</i> after the removal of the broadening effects due to the finite beam width of the radar. With the simultaneous in situ measurements of <i>ε</i> with balloon-borne radiosondes at the MAARSY radar site, we compare the <i>ε</i> values derived from both techniques and reach an encouraging agreement between them. Using all the radar data available, we present a preliminary climatology of atmospheric turbulence in the UTLS (upper troposphere and lower stratosphere) region above the MAARSY site showing a variability of more than 5 orders of magnitude inherent in turbulent energy dissipation rates. The derived <i>ε</i> values reveal a log-normal distribution with a negative skewness, and the <i>ε</i> profiles show an increase with height which is also the case for each individual month. Atmospheric turbulence based on our radar measurements reveals a seasonal variation but no clear diurnal variation in the UTLS region. Comparison of <i>ε</i> with the gradient Richardson number <i>Ri</i> shows that only 1.7 % of all the data with turbulence occur under the condition of <i>Ri</i> &lt; 1 and that the values of <i>ε</i> under the condition of <i>Ri</i> &lt; 1 are significantly larger than those under <i>Ri</i> &gt; 1. Further, there is a roughly negative correlation between <i>ε</i> and <i>Ri</i> that is independent of the scale dependence of <i>Ri</i>. Turbulence under active dynamical conditions (velocity of horizontal wind <i>U</i> &gt; 10 m s<sup>−1</sup>) is significantly stronger than under quiet conditions (<i>U</i> &lt; 10 m s<sup>−1</sup>). Last but not least, the derived <i>ε</i> values are compared with the corresponding vertical shears of background wind velocity showing a linear relation with a corresponding correlation coefficient <i>r</i> = 58 % well above the 99.9 % significance level. This implies that wind shears play an important role in the turbulence generation in the troposphere and lower stratosphere (through the Kelvin–Helmholtz instability).https://www.ann-geophys.net/34/1209/2016/angeo-34-1209-2016.pdf
spellingShingle Q. Li
M. Rapp
M. Rapp
A. Schrön
A. Schneider
G. Stober
Derivation of turbulent energy dissipation rate with the Middle Atmosphere Alomar Radar System (MAARSY) and radiosondes at Andøya, Norway
Annales Geophysicae
title Derivation of turbulent energy dissipation rate with the Middle Atmosphere Alomar Radar System (MAARSY) and radiosondes at Andøya, Norway
title_full Derivation of turbulent energy dissipation rate with the Middle Atmosphere Alomar Radar System (MAARSY) and radiosondes at Andøya, Norway
title_fullStr Derivation of turbulent energy dissipation rate with the Middle Atmosphere Alomar Radar System (MAARSY) and radiosondes at Andøya, Norway
title_full_unstemmed Derivation of turbulent energy dissipation rate with the Middle Atmosphere Alomar Radar System (MAARSY) and radiosondes at Andøya, Norway
title_short Derivation of turbulent energy dissipation rate with the Middle Atmosphere Alomar Radar System (MAARSY) and radiosondes at Andøya, Norway
title_sort derivation of turbulent energy dissipation rate with the middle atmosphere alomar radar system maarsy and radiosondes at andoya norway
url https://www.ann-geophys.net/34/1209/2016/angeo-34-1209-2016.pdf
work_keys_str_mv AT qli derivationofturbulentenergydissipationratewiththemiddleatmospherealomarradarsystemmaarsyandradiosondesatandøyanorway
AT mrapp derivationofturbulentenergydissipationratewiththemiddleatmospherealomarradarsystemmaarsyandradiosondesatandøyanorway
AT mrapp derivationofturbulentenergydissipationratewiththemiddleatmospherealomarradarsystemmaarsyandradiosondesatandøyanorway
AT aschron derivationofturbulentenergydissipationratewiththemiddleatmospherealomarradarsystemmaarsyandradiosondesatandøyanorway
AT aschneider derivationofturbulentenergydissipationratewiththemiddleatmospherealomarradarsystemmaarsyandradiosondesatandøyanorway
AT gstober derivationofturbulentenergydissipationratewiththemiddleatmospherealomarradarsystemmaarsyandradiosondesatandøyanorway